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A note on the convergence analysis of a sparse
grid multivariate probability density estimator
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Abstract

With the recent growth in volume and complexity of available data
has come a renewed interest in the problem of estimating multivariate
probability density functions. However, traditional methods encounter
the curse of dimensionality (complexity grows exponentially with di-
mension). Here we provide an outline of a convergence analysis of a
sparse grid based probability density estimation, which supports the
use of the method for moderately complex (up to 15 dimensions) data
sets, as has already been demonstrated for sparse grid quadrature and
interpolation.
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1 Introduction

A standard method for estimating probability density functions is the simple
histogram. This method and various extensions work well for one to three
dimensional data, as demonstrated by Scott [5]. This method is based on
discretising the various dimensions and forming bins into which the data is
associated. Another way of looking at this method is to search for a function
from a discretisation space (in this case the piecewise constant functions as-
sociated with the bins) which matches the distribution of the data in some
averaged sense. For high dimensional problems this leads to impractical
methods requiring an astronomical number of bins or equivalently an astro-
nomical number of basis functions in the discretisation space (for a given
approximation error). For instance if each of the d dimensions is discretised
into sub-intervals with sides of length h then the number of bins is O(h−d).
For these piecewise constant spaces, the approximation order of the space
is O(h). For a 15 dimensional problem, suppose we divide each dimension
into just four sub-interval intervals (h = 1/4) then the number of bins is
415 = 1, 073, 741, 824 (a large number of bins!). The approximation error for
such a coarse space is O(1/4). Other methods based on kernel estimation can
deal with high dimensions, (the size of the discretisation space is the same as
the number of data records) but leads to algorithms which depend at least
quadratically on the number of data records, at least for high dimensional
problems.

In this article we describe a probability density estimation method which is
somewhat like the histogram method, in that a grid based discrete approx-
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imation space is used, but which can be applied to higher dimensions and
also scales linearly with data size, both in storage and execution time. In
this direction we investigate generalizations of histograms, in which we use
an L2 projection onto a discrete approximation space to estimate probability
density functions. When the discrete space is the space of tensor products
of piecewise constant functions we obtain the classical histogram, and if we
use sparse grid spaces as described by Zenger [6] and Garcke et al. [4], then
we arrive at the sparse grid histograms described in this article.

The outline of our analysis shows, for smooth enough underlying probability
density functions, that the approximation error of our sparse grid histogram
is O(| logh|d−1h2 + | logh|dn−1/2h−1/2) when using a classic piece-wise linear
sparse grid space of dimension O(| logh|d−1h−1). The method has a com-
plexity which scales linearly with n, the number of data records.

Our analysis supports the use of the method for moderately complex data sets
with up to 15 dimensions and millions of data points. This complements the
theoretical results on sparse grid quadrature and interpolation as reviewed
by Bungartz and Griebel [2]. Practical implementation of our method is an
area of current research and will be reported in a subsequent article.

2 Sparse grid function spaces

This section provides an introduction to sparse grid functions and, in particu-
lar, demonstrates some of the approximation and complexity properties that
make them useful for high dimensional approximation. The online tutorial
by Garcke [3] and the extensive review by Bungartz and Griebel [2] provides
details of the results noted in this section. The results of this section provide
a basis for the description of our probability estimation problem in section 3.

First, though, we introduce some standard function space notation and def-
initions. Following common usage, the space of square integrable functions
on Id, the d dimensional unit cube, is denoted L2, with associated inner
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product denoted (u, v)L2 and norm ‖u‖L2 . The standard Sobolov spaces are

Hm =
{
u ∈ L2 :

∑
|α|≤m

‖Dαu‖L2 <∞}
where α = (α1, . . . , αd) ∈ Nd0 is a d multi-index, Dα is the differential opera-
tor Dα = ∂α1

1 ∂
α2
2 · · ·∂

αd
d and |α| =

∑d
s=1 αs . The associated Hm inner prod-

uct and norm are (u, v)Hm =
∑

|α|≤m(Dαu,Dαv)L2 and ‖u‖2Hm = (u, u)Hm .

When working with tensor product spaces, and sparse grid spaces in partic-
ular, it is convenient to work with the mixed derivative spaces

Hmmix =
{
u ∈ L2 :

∑
|α|∞≤m

‖Dαu‖L2 <∞}
where |α|∞ = maxs αs . Note that the sum is now over all multi-indices such
that |α|∞ ≤ m . The inner product and norm on the mixed derivative space
are (u, v)Hm

mix
=
∑

|α|∞≤m(Dαu,Dαv)L2 and ‖u‖2Hm
mix

= (u, u)Hm
mix

.

The one dimensional uniform grid space is generated by sums of translations
and dilations of the standard triangular “hat” function

φ(x) =

{
1− |x|, if x ∈ (−1, 1),

0, otherwise.

We denote translated and dilated versions of the standard hat function by

φj, i(x) = φ

(
x− ihj

hj

)
where hj = 2−j. These functions are naturally associated with a grid on [0, 1]

with a grid size of hj. The parameter j denotes the level.

Consider the index set Rj = {all integers between 1 and 2j − 1}. The stan-
dard homogeneous piece-wise linear finite element space on the interval I =
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[0, 1] is Vj = span{φj, i : i ∈ Rj} where the functions are restricted to the unit
interval.

Now consider the index sets consisting of the odd indices in Rj, that is
Qj = {all odd integers between 1 and 2j − 1}. An alternative basis for Vj,
the hierarchial basis, is the set of basis functions {φk, i : k ≤ j, i ∈ Qk}. Note
that for this basis we have basis functions ranging in level from 1 to j.

We use tensor products to generalise to multi-dimensions. Consider the
multi-index, j = (j1, . . . , jd). Note that we use bold to denote multi-indices.
We define k ≤ j if and only if ks ≤ js for all s = 1, . . . , d , and in particular
k ≤ j1 if and only if ks ≤ j for all s = 1, . . . , d .

We consider a multi-dimensional grid with varying grid sizes hjs in each
dimension s = 1, . . . , d . The associated space of piece-wise multi-linear grid
functions is

Vj =

d⊗
s=1

Vjs .

The space Vj is uniform in each dimension, but each dimension can have a
different mesh size. A basis for Vj is constructed from tensor products of the
one dimensional basis functions φj, i. Let

φj, i(x) =

d∏
s=1

φjs, is(xs) .

Introducing the multi-dimensional index set

Rj = Rj1 × · · · × Rjd ,

then a basis for Vj is {φj, i : i ∈ Rj}. Note that the standard uniform grid
space is Vj1.

For the hierarchical decomposition we consider the multi-dimensional index
sets

Qk = Qk1
× · · · ×Qkd

.
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Then the multi-dimensional hierarchical subspaces are defined by Wk =

span{φk, i : i ∈ Qk}. The uniform spaces have the decomposition

Vj =
⊕
k≤j

Wk

and a corresponding hierarchical basis for Vj is {φk, i : k ≤ j, i ∈ Qk}. Now
each function u ∈ Vj is represented by a hierarchical subspace decomposition

u = IVj
u =
∑
k≤j

IWk
u

where the IWk
u are components of u in the hierarchial subspace Wk. Indeed

for general functions u ∈ H2mix ,

u =
∑
k

IWk
u

where IWk
u ∈Wk and

‖IWk
u‖L2 ≤ 3−d2−2|k||u|H2

mix
. (1)

Hence, for a function in H2mix, all components IWk
u, with |k| = j , are com-

parable in size. It is then natural to consider the reduced space

Sj =
⊕
|k|≤j

Wk .

This is the classic sparse grid function space.

For functions in H2mix, the sparse grid space approximation error is essen-
tially second order, O

(
h2j
)
. Indeed, summing up error terms bounded by

equation (1) implies that∥∥u− ISj
u
∥∥
L2

= O
(
jd−12−2j

)
|u|H2

mix
= O

(
| loghj|

d−1h2j
)
|u|H2

mix
. (2)
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The details of these results are described by Bungartz and Griebel [1]. For
function in H2, the approximation error on a uniform grid satisfies the clas-
sical second order result,∥∥u− IVj1

u
∥∥
L2

= O
(
h2j
)
|u|H2 . (3)

The dimension of the corresponding full and sparse grid spaces are very
different,

dim{Vj1} = O
(
2j(d−1)

)
= O

(
h−d
j

)
(4)

and
dim{Sj} = O

(
jd−12j

)
= O

(
| loghj|

d−1h−1
j

)
. (5)

Sparse grids provide very similar approximation order as the uniform grid,
but the dimension of the sparse grid space (as a finite dimensional vector
space) is geometrically smaller.

An alternative view of the sparse grid is that of a union of uniform grids.
Sparse grid functions can be represented as a combination of functions on
these uniform grids. This representation is known as the combination for-
mula. To be explicit, consider a class of projections PVk

onto Vk for |k| ≤ j ,
such that PVk

PVm = PVk∩Vm . Then the associated projection PSj
onto the

sparse grid Sj, is given by the combination formula (described by Garcke [3])

PSj
=

∑
j−d+1≤|k|≤j

(−1)j−|k|

(
d− 1

j− |k|

)
PVk

. (6)

In particular, the projections can be L2 projections, and indeed in the sequel
we will consider PVk

to be the L2 projection onto Vk.

3 Estimation of probability density

functions

Given a set of n data points Xi ∈ Rd distributed according to a probability
density function p, we want to look for an approximation pj ∈ Sj which
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satisfies the following projection problem in the finite dimensional space Sj.

Problem 1 Find a sparse grid function pj ∈ Sj such that

(pj, v)L2 =
1

n

n∑
i=1

v(Xi) for all v ∈ Sj .

The expected value of the right hand side is simply

E

[
1

n

n∑
i=1

v(Xi)

]
= (p, v)L2 .

So
(Epj, v)L2 = (p, v)L2

for all v ∈ Sj and so we expect Epj to be close to p.

Theorem 1 (Error estimate) If the n data points Xi ∈ Rd are distributed
according to a probability density function p ∈ H2mix, then the solution pj ∈ Sj
of Problem 1 satisfies

E‖pj − p‖L2
≤ C

(
| loghj|

d−1h2j ‖p‖H2
mix

+ | loghj|
dh

−1/2
j n−1/2

)
.

Hence, the expected squared error is bounded by the squared bias plus the
variance.

The first term measures the error when using a sparse grid function to ap-
proximate an H2mix function and the second term measures the error when
using the empirical distribution in place of using the exact distribution to
calculate the expected values of the test functions.

For a given number of data points n we obtain a nearly optimal choice of
sparse grid size, by equating the two error terms. Up to a log term, the
optimal choice of grid size hj is n−1/5 which provides an error bound

E‖pj − p‖L2
≤ C| logn|dn−2/5‖p‖H2

mix
.
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Remark 2 For uniform spaces we expect

E‖pj − p‖L2
≤ C(h2j + h

−d/2
j n−1/2)‖p‖H2

with an optimal choice of grid size hj being n−1/(4+d), implying

E‖pj − p‖L2
≤ Cn−2/(4+d)‖p‖H2 .

Note the dependence on dimension, for higher dimensions, the approximation
grows progressively worse. This is independent of the fact that the dimension
of the uniform grid space is much larger than the corresponding sparse grid
space. Of course, this does depend on the much stronger assumption on the
smoothness of the underlying density function.

3.1 Outline of proof

The rest of the article is an outline of the convergence analysis of the method.
The details will appear in a longer article which is in preparation.

We want to estimate

‖pj − p‖2L2 = (pj − p, pj − p)L2 .

As is typical in finite element analysis, we split the expression

(pj − p, pj − p)L2 = (pj − p, pj − PSj
p)L2 + (pj − p, PSj

p− p)L2 . (7)

The first term is bounded by the empirical error presented in subsection 3.2,
namely

(pj − p, v)L2 ≤ Z2d| loghj|
dh

−1/2
j ‖v‖L2

for all v ∈ Sj , where EZ ≤ n−1/2. So we obtain

|(pj − p, pj − PSj
p)L2 |

≤ Z2d| loghj|
dh

−1/2
j ‖pj − PSj

p‖L2
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≤ CZ2| loghj|
2dh−1

j + 1/8‖pj − PSj
p‖2L2

≤ CZ2| loghj|
2dh−1

j + 1/4‖pj − p‖2L2 + 1/4‖p− PSj
p‖2L2 .

The second term is bounded by the approximation result, equation (2):

|(pj − p, PSj
p− p)L2 | ≤ ‖pj − p‖L2‖p− PSj

p‖L2

≤ 1/4‖pj − p‖2L2 + ‖p− PSj
p‖2L2

≤ 1/4‖pj − p‖2L2 + C| loghj|
2(d−1)h4j ‖p‖2H2

mix
.

Together we have

1

2
(pj − p, pj − p)L2 ≤ C

(
| loghj|

2(d−1)h4j ‖p‖2H2
mix

+ Z2| loghj|
2dh−1

j

)
which implies that

‖pj − p‖L2 ≤ C
(
| loghj|

(d−1)h2j ‖p‖H2
mix

+ Z| loghj|
dh

−1/2
j

)
.

Taking the expected value, provides the result.

3.2 The empirical error

Now we estimate (pj − p, v)L2 for v ∈ Sj . Consider the decomposition of v
using the combination formula, equation (6). Let us write the combination
formula as

v =
∑
|k|≤j

βkPVk
v . (8)

We write each projection as a linear combination of the standard basis func-
tions PVk

v =
∑
i≤k γk,iφk, i. Now

‖PVk
v‖L2 ≤ ‖v‖L2
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as PVk
is taken as the L2 projection. We need to bound the L2 norm in terms

of the basis coefficients. Let γk be the vector of coefficients γk,i, i ∈ Rk .
Then

‖PVk
v‖2L2 = γTkMkγk

where Mk is the standard finite element mass matrix for a uniform grid. It
is obtained as a tensor product of the corresponding one dimensional ma-
trix Mk. The eigenvalues of the one dimension matrix Mk lie between 1

4
hk

and hk, so (∑
i∈Rk

γ2k,i

)1/2
≤ 2dh−1/2

k ‖PVk
v‖L2 ≤ 2dh−1/2

k ‖v‖L2 . (9)

Here we have used hk to represent the product hk1
· · ·hkd

. Now

(pj − p, PVk
v)L2 =

1

n

n∑
i=1

PVk
v(Xi) − (p, PVk

v)L2

≤

(∑
i∈Rk

γ2k,i

)1/2∑
i∈Rk

[
1

n

n∑
i=1

φk, i(Xi) − Eφk, i

]21/2 .
The first term is bounded by equation (9). The second term is independent
of the function v and is analyzed as a sum of independent random variables.
Let

Zk =

∑
i∈Rk

[
1

n

n∑
i=1

φk, i(Xi) − Eφk, i

]21/2 .
Together we conclude that

(pj − p, PVk
v)L2 ≤ Zk2dh−1/2

k ‖v‖L2 .

Since Z2k is a sum of the squares of basis functions which are bounded by 1,
it follows that

EZ2k ≤
1

n
and hence EZk ≤

1

n1/2
.
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Now we need to add all the contributions from the combination formula. For
v ∈ Sj , using equation (8),

(pj − p, v)L2 = (pj − p,
∑
|k|≤j

βkPVk
)L2

=
∑
|k|≤j

βk (pj − p, PVk
)L2

≤ 2dh
−1/2
j ‖v‖L2

∑
|k|≤j

Zk|βk| .

The expected value of
∑

|k|≤j Zk|βk| is bounded by a sum of binomial terms
which are bounded by

O
(
jdn−1/2

)
= O

(
| loghj|

dn−1/2
)
.

Together this leads to

E(pj − p, v)L2 ≤ 2d| loghj|
dh

−1/2
j n−1/2‖v‖L2

which concludes the outline of the convergence analysis for our sparse grid
probability density estimator.
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