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Flow from a source above a sloping base
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Abstract

We consider the outflow of water from the peak of a triangular ridge
into a channel of finite depth. Solutions are computed for different
flow rates and bottom angles. A numerical method is used to compute
the flow from the source for small values of flow rate and it is found
that there is a maximum flow rate beyond which steady solutions do
not seem to exist. Limiting flows are computed for each geometrical
configuration. One application of this work is as a model of saline
water being returned to the ocean after desalination.
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1 Introduction
We consider the outflow of water from a horizontal line source on the peak of
a triangular ridge into a channel of finite depth (see Figure 1). An interface
or free surface is situated above the source and it is the behaviour of this
interface that is the main focus of the work. Steady solutions to the potential
flow problem are obtained using a perturbation method and also with a
numerical approach.

In steady flow, the solutions for free surface shapes for outflows from sources
and inflows to sinks are identical [4]. For both finite and infinite depths
solutions with a stagnation point on the free surface exist for flow rates below
some maximum value [2, 3, 4, 10, 11]. Similar maximum values were found for
the flow from a point sink [6]. Some of this work was based around an exact
solution for a particular value of the slope, γ = 1

3
where πγ is the angle to

the horizontal [1, 2, 3]. Unsteady flows were computed by Landrini et al. [7],
and more recently by Stokes et al. [9], and both showed that the outcomes
range from evolution to steady flow for lower flow rates to breaking waves at
higher flows. Lustri et al. [8] consided the existence of waves in steady flow
and showed that for nonlinear solutions there are regions of non-uniqueness.
At higher flow rates Tuck et al. [10] and Vanden-Broeck et al. [12] obtained
steady solutions with a drawn-down cusp in the interface, and Hocking [5]
showed that these cusps represent a transition to a two-layer flow. For source
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Figure 1: The source S is at the top of the slope at x = 0 , y = −hS . The far
field (x → ∞) interface defines y = 0 and the flow is symmetric about the
vertical y axis. Point B corresponds to ζ = ζB , S to ζ = 0 and C to ζ = 1 in
the complex ζ-plane. The δ values are the angles of the streamlines.
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flows, although these cusped solutions exist mathematically, it is not clear
that they exist in reality.

One application of this current work is in the return of water to the ocean
after desalination. Such water is released from an elevated source and flows
into the ocean, but because the water is denser than seawater it forms a
layer below the seawater, with the layer height dependent on the density
difference and the flow rate [13]. As a preliminary study we assume the flow
to be irrotational and the fluid to be inviscid and incompressible. These
assumptions are valid if the flow rate is relatively small and the interface
between the layers is thin.



2 Problem formulation C78

2 Problem formulation
Different flow rates are computed for steady flow from a horizontal line source
situated at the top of a sloping structure with an angle δ = −πγ above a
horizontal base. Invoking symmetry along the length of the line source, this
problem reduces to two dimensions with flow from a point source at the top
of a triangular shaped ridge in an otherwise flat region (see Figure 1). The
density of water from the source is higher than the ocean water into which it
flows, so the outflow will travel down the slope and along the ocean floor.

The flow is treated as irrotational and steady and the fluid is inviscid and
incompressible. Since the problem is two dimensional, we solve it in the
complex z = x+ iy plane with the origin situated directly above the source
and at the level of the outflowing interface in the far field (see Figure 1).
Mathematically we want to find a complex potentialw(z) = φ(x, y)+iψ(x, y) ,
where φ is the velocity potential and ψ is the stream function, and both
satisfy Laplace’s equation

∇2φ = ∇2ψ = 0 , (1)

where q = (u, v) = (∂φ
∂x
, ∂φ
∂y
) = (∂ψ

∂y
,−∂ψ

∂x
) is the velocity of the flow. There can

be no flow through the interface or the bottom, which gives the conditions

∂φ

∂y
= η ′(x)

∂φ

∂x
on y = η(x) , (2)

∂φ

∂y
= b ′(x)

∂φ

∂x
on y = b(x) , (3)

where y = b(x) is the equation of the base and y = η(x) is the equation
of the interface. Here we assume that the base is horizontal for all x > xB
and slopes with angle −πγ for 0 < x < xB . We assume the fluid above the
interface is stagnant so the pressure on the interface y = η(x) is constant and
at this interface the system satisfies Bernoulli’s equation:

g ′y+
1

2

[(
∂φ

∂x

)2
+

(
∂φ

∂y

)2]
= g ′H+

1

2
U2 , (4)



2 Problem formulation C79

where H is the height of the interface above the base at x → ∞ with
corresponding flow speed U, and g ′ = ∆ρ

ρ
g is the ‘reduced’ gravity with g the

gravity, ∆ρ the difference in density between the fluid coming from the outlet
and the ocean water, and ρ some reference density.

The flux from the source must be m = 2UH/
(
1
2
+ γ

)
to account for outflow

in the positive and negative x directions, and the fact that the influx is from
an angle less than 360 degrees. Non-dimensionalizing using the length scale H
and the velocity scale U, q̂ = q/U , η̂ = η/H and (x̂, ŷ) = (x/H, y/H) ,
then (4) becomes

|q̂|2 + 2F−2η̂ = 1 on ŷ = η̂(x̂) , (5)

where F2 = U2

g ′H
defines the Froude number. Thus, the main physical param-

eters are the Froude number (which encapsulates the relationship between
the flow rate, the depth of the channel and the density difference between
the layers), the ridge slope γ, and the source depth hS. We will analyse the
results as they are affected by these parameters. Increasing Froude number
represents increasing flux from the source.

In non-dimensional coordinates, the source has the form

φ̂→ 1

π(2γ+ 1)
log[x̂2 + (ŷ− hS)

2]1/2 as (x̂, ŷ) → (0, hS) , (6)

where hS = HS/H is the non-dimensional source depth and ŷ = −1 corre-
sponds to the base. Henceforth, for simplicity, we omit the ŵ from non-
dimensional variables. To solve the full problem we need to solve Laplace’s
equation (1) with (2), (3) and (5) subject to the limiting behaviour (6).

We use the Nekrasov formulation and map the physical z-plane to the upper
half of the ζ-plane, in which the source is at the origin. The particular
mapping required is determined as part of the solution, as we now outline.
The complex potential of the source flow is

w(ζ(z)) =
1

π
log(ζ) . (7)
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and we relate to the flow variables by solving for Ω(ζ) = δ(ζ) + iτ(ζ) , where
Ω is an analytic function, δ is the angle at any point, eτ is the speed at any
point, and w is related to Ω by the relation

w ′(z(ζ)) = exp[iΩ(ζ)] . (8)

Invoking Cauchy’s theorem on Ω and taking real and imaginary parts gives

τ(ζ) =
1

π
cpv

∫∞
−∞

δ(ζ0)

ζ0 − ζ
dζ0 , (9)

δ(ζ) = −
1

π
cpv

∫∞
−∞

τ(ζ0)

ζ0 − ζ
dζ0 , (10)

where ‘cpv’ means the integrals are of Cauchy-principal-value form. On the
boundaries of the flow domain, the angle δ is known (see Figure 1). Therefore,

δ =


0 , if −∞ < ζ < ζB ,

−πγ , if ζB < ζ < 0 ,
π/2 , if 0 < ζ < 1 ,
Unknown, if ζ > 1 ,

(11)

where ζB is the mapping of the stagnation (corner) point B (see Figure 1).
Substituting the known values of δ(ζ) (11) into (9), we find

τ(ζ) = log
(
(1− ζ)1/2(ζB − ζ)

γ

ζ
1
2+γ

)
+
1

π

∫∞
1

δ(ζ0)

ζ0 − ζ
dζ0 , (12)

and the surface shape is obtained from z ′(ζ) = z ′(w)dw
dζ

, so that

x(ζ0) = x(1) +
1

π

∫ ζ
1

e−τ(ζ0) cos[δ(ζ0)]
dζ0

ζ0
, (13)

y(ζ0) = y(1) +
1

π

∫ ζ
1

e−τ(ζ0) sin[δ(ζ0)]
dζ0

ζ0
. (14)
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Substituting (12) and (14) into (5) gives

1

π

∫ ζ
1

e−τ(ζ0) sin[δ(ζ0)]
dζ0

ζ0
+
1

2
F2e2τ(ζ) −

1

2
F2 = 0 . (15)

By differentiating, rearranging and integrating equation (15) from 1 < ζ < ζ0
and taking the logarithm of both sides we find

τ(ζ) =
1

3
log
(
−3

πF2

∫ ζ
1

sin[δ(ζ0)]
ζ0

dζ0

)
. (16)

Combining equations (12) and (16) we obtain, after some work(
(1− ζ)1/2(ζB − ζ)

γ

ζγ+1/2

)3
exp

(
3

π

∫∞
1

δ(ζ0)

ζ0 − ζ
dζ0

)
=

−3

πF2

∫ ζ
1

sin[δ(ζ0)]
ζ0

dζ0 ,

(17)
a singular, nonlinear integral equation for δ(ζ).

3 Solution for small Froude number
For small Froude number F we assume that the angle of the free surface δ(ζ)
is also small so that

δ(ζB; ζ) = F
2δ2(ζB; ζ) + F

4δ4(ζB; ζ) + · · · . (18)

Substituting (18) into (17) gives,(
(1− ζ)1/2(ζB − ζ)

γ

ζγ+1/2

)3
exp

(
3

π

∫∞
1

F2δ2(ζB; ζ0)

ζ0 − ζ
dζ0

)
=

−3

πF2

∫ ζ
1

sin
[
F2δ2(ζB; ζ0) + · · ·

]
ζ0

dζ0 . (19)

Omitting terms of order F2 and higher, and differentiating with respect to ζ,
we obtain

δ2(ζ) = −
π

2

(
(1− ζ)1/2ζ−3(γ+1/2)(ζB − ζ)

3γ−1{ζB[2γ(ζ− 1) − 1] + ζ}
)

(20)
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Figure 2: Free surface profiles obtained from (20). The surfaces (right)
correspond to the bottom shapes (left), for γ = 1/3 , F = 0.1 and |ζB| =
1 (blue), 10 (pink), 100 (green) and 200 (red).
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for the surface angle, where δ(ζ) ≈ F2δ2(ζ) .

Some example surface shapes are given in Figure 2. Since ζB is a mapping
parameter it is a little difficult to interpret the results without understanding
how it changes the geometry. Figure 2 shows the bottom shapes for |ζB| =
1, 10, 100, 200 and γ = 1/3 , and the corresponding surface shapes. As |ζB|
increases, the distance between the base and the vertical wall increases for
small |ζB|, but for very large values of |ζB| the top of the slope approaches
the level of the undisturbed interface at y = 0 . As the ridge gets higher
and impinges further into the flow domain, the mound of fluid around the
ridge gets narrower and the surrounding dip gets deeper. This is because the
local flow must increase in speed due to the pressure decrease because of the
constriction of the ridge.

4 Numerical method
The nonlinear integral equation (17) is solved by finding the integral numeri-
cally at a set of discrete points and using an iteration scheme to solve for δ(ζ).
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Using the transformation ζ = sin−2 α in (17) gives(
(sin2 α− 1)3/2(ζB sin2 α− 1)3γ

sin3(γ+1/2) α

)
exp

(
6

π

∫π/2
0

δ(θ) cot θ sin2 α
sin2 α− sin2 θ

dθ

)

= 1+

(
6

πF2

∫α
π/2

sin[δ(θ)] cot θdθ
)
, (21)

and substituting δ(θ) = f(θ) sin θ , adding and subtracting f at α = θ and
simplifying, yields[

cos3 α(1− ζB sin2 α)3γ
]
E = 1+

6

πF2

∫α
π/2

sin[δ(θ)]
tan θ

dθ , (22)

where

E = exp

(
−6 sin2 α

π

∫π/2
0

[f(α) − f(θ)] cos θ(
sin2 α− sin2 θ

) dθ)+
f(α)

2 sinα
log
[
1+ sin2 α
1− sin2 α

]
.

(23)

Solving (22) and (23) provides the solution for the problem. Discretizing α over
0 < α < π

2
at points αk, k = 1, . . . ,N , and making a guess for δ(αk) = δk ,

k = 1, . . . ,N , the solution is obtained by iteration using the Octave routine
fsolve. Once the values of δk, k = 1, . . . ,N , are known we compute x and y
for the points on the interface from (12), (13) and (14) as

x(α) =
1

π

∫α
π/2

e−τ(θ) cos[δ(θ)] cot θdθ , (24)

y(α) = 1+
1

2
F2 +

1

π

∫α
π/2

e−τ(θ) sin[δ(θ)] cot θdθ . (25)

Using (14), and integrating from 0 < ζ < 1 using the transforms ζ = sin−2 θ

gives the distance from the source to the interface

SF =
2

π

∫π/2
0

sin2γ θ
(sin2 θ− ζB)γ

exp

(
2

π

∫π/2
0

δ(α0) cotα0
1− sin2 θ sin2 α0

dα0

)
dθ , (26)
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Figure 3: The dependence of angle δ of the free surface on α for increasing F,
ζB = −1 , and γ = 1/3 . The dashed (blue) line is the approximate solution.
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and integrating the same equation from ζB < ζ < 0 with ζ = ζB cos2 θ gives
the source to base distance

SB = −
2ζ

1/2
B sin(πγ)
π

∫π/2
0

cos2γ θ sin1−2γ θ
(1− ζB cos2 θ)1/2

G(θ)dθ , (27)

where

G(θ) = exp
(
2

π

∫ 1
0

δ(α0) cotα0
1− cos2 θ sin2 α0

dα0

)
.

5 Results
Figure 3 shows a comparision of the numerical solution and the small F
approximate solution for the surface angle δ for γ = 1/3 , ζB = −1 , and
F = 0.05, 0.1, 0.15, 0.2 . The two solutions agree well for small F and diverge
slightly for larger values and this validates the numerical scheme. For different
values of N there is little difference between the computed solutions, so
N = 300 was used for most calculations. The numerical method was used
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for a range of different values of F, ζB and γ. For each slope angle and base
depth there was a maximum value of F beyond which no steady solutions
could be obtained, consistent with earlier work [2, 4].

Figure 4a shows the relation between SB and Fmax for different values of slope
γ = 0.1, 1/3, 0.4, 0.5 . The maximum F value is affected very little by the
slope angle, but decreases as the source gets closer to the surface. If the source
gets close to the surface, then the distance to the surface becomes the most
important factor. We define a modified Froude number FS = F(1− SB)−3/2
based on the distance from the source to the surface. Figure 4b shows that
as SB increases, the maximum value of FS increases. The effect of γ is
relatively small compared to the effect of the depth, but the maximum value
of FS increases slightly for higher slopes. This is confirmed in Figure 4c which
shows the maximum value of FS for different slopes γ when the source is at
height SB = 0.13 . As γ increases the maximum value of FS increases from 0.7

to around 0.8. Thus increasing SB only slightly increases the maximum of FS,
but once γ is greater than γ ≈ 0.25 there is little change.

6 Conclusions
An accurate numerical method has been used to compute the flow from a
source above a sloping structure and verified by comparison to an approximate
solution for small values of Froude number F. Viscosity and interfacial insta-
bilities have been neglected in the model, allowing us to find the underlying
flow behaviour without undue complication. The introduction of the slope
causes a more rapid velocity in the outflow due to restriction of the layer,
and as a consequence steady solutions only exist at smaller flow rates as γ
increases. Higher flow speeds will induce greater mixing at the interface and
so having the source restricted in angle of outflow should improve mixing
performance. The unsteady flow regime should also induce more mixing, a
desirable feature in desalination outfalls. However, to test these conclusions a
simulation including viscosity is necessary and this will be the next step in
this research.
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Figure 4: The effect of source height SB and slope γ on maximum F: (a) SB
versus maximum F for γ = 0.1, 1/3, 0.4, 0.5 ; (b) SB versus maximum FS at
γ = 0.1, 1/3, 0.4, 0.5 ; (c) Maximum FS versus slope γ.
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