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Extraction of density-layered fluid from a
porous medium
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Abstract

We consider axisymmetric flow towards a point sink from a stratified
fluid in a vertically confined aquifer. We present two approaches to
solve the equations of flow for the linear density gradient case. Firstly,
a series method results in an eigenfunction expansion in Whittaker
functions. The second method is a simple finite difference method.
Comparison of the two methods verifies the finite difference method
is accurate, so that more complicated nonlinear, density stratification
can be considered. Such nonlinear profiles cannot be considered with
the eigenfunction approach. Interesting results for the case where
the density stratification changes from linear to almost two-layer are
presented, showing that in the nonlinear case there are certain values
of flow rate for which a steady solution does not occur.
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1 Introduction

Flow of fluids in porous media is very important across a range of applications.
Oil recovery from underground, pumping fresh water from aquifers and mineral
leaching in mining applications are obvious examples [3|. A characteristic of
the fluids in many of these applications is that they are stratified in density,
either due to fluid properties (oil-water), salt content (fresh-water, salt-water)
or temperature [6, 14, 7].

The basic law for the flow of fluids through porous media is Darcy’s Law,

k
=——VO, 1
q . (1)

where ( is the specific discharge (velocity), k is the permeability of the porous
medium, p is the fluid viscosity, and the piezometric head is defined as

P
(DZA——FZ 2
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Figure 1: Sketch defining the variables for flow into a point sink located
at (0,d). Arrows indicate the direction of flow and p is the variable density
gradient. The duct has total height d. The radial coordinate is r and the
vertical coordinate is z.
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where p is the density, p is the pressure, g is gravity and z is the elevation
head. Traditional solution methods [3, 11, 14, 13] include modelling the
interface as a free boundary and simplifying the equations to those that can
be solved quickly and accurately. The results of traditional methods provide
good tests of simulation packages such as COMSOL [4], but also provide better
understanding of the dynamic processes.

2 Problem formulation

Consider the axisymmetric flow of a stratified fluid into a point sink on the
top surface of a vertically confined aquifer. In cylindrical coordinates the
sink is situated at r = 0 and on the top of a vertically confined region with
height d (see Figure 1.). The flow is assumed to be radially symmetric toward
the sink, and the fluid to have a density stratification p(r,z).

Following the work of Yih [11], consider the cylindrical coordinates (r, ¢, z)
with z increasing vertically upward. In axisymmetric flow, the flow is inde-
pendent of ¢, and the pseudo-velocity is defined by

(W, w') = (1, ), (3)
Ho
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where Wy is a constant reference viscosity, and {i and W are the velocity
components in the r and z directions, respectively. In terms of the pseudo-
velocity, the equations of motion (1) become
0
Ho v 9P

_° Hoor 9P
e N S (4)

Since p does not change along a streamline in steady flows, u’ and w’ satisfy
the continuity equation and so we use a new stream function {’ which is

defined by

u =— and w'=— . (5)
After some work [11] we reach the equation

0? 2 10 kgr dp oy’
L e )
0zZ2  0or2  ror W dy’ or

If the fluid is incompressible, then in steady flow p is a function of 1’ only.

We now solve (6) together with appropriate boundary conditions

0, r=0, 0<z<d;
V' = 0, z=0, r>0; (7)
Q, z=d, r>0;

where Q is the discharge into the sink. The discontinuity of P’ at r = 0 and
z = d represents the sink.

Define the upstream (r — oo) density as p — f(z). To reduce the number of
parameters in the problem, we use the dimensionless quantities

(50 =(%3), ‘Pzngl, p=%,

then (6) becomes

92 10 0? _( 2mkg&po dp oY
(a—az‘za—ﬁa—cz)‘y— (_—Quo )@a_a’ ®)



3 Linear density gradient C141

with the boundary conditions

0, £=0, 0<l<T;
Y=40, (=0, &>0; (9)
1, =1, £>0.

3 Linear density gradient

A long way upstream (& — 00) we assume a linear density gradient p = 1—,
so that g—g = f'(¢{) = —f . For a linear gradient, a long way upstream ¥ — (
as the flow velocity approaches zero, and since in incompressible flow the
density along a streamline remains the same, then it is true everywhere that

do _
v
The non-dimensional form of equation (6) with the linear density gradient is

0? 10 02 Zﬂkgﬁpod) oV ) ov
O 10 L O Ny (TTROPRAN 08 5o O 1
<aaz far b a@) ( o ) for Nt (10

where

21tk d

_ 27kgBpod (11)
Qro

is proportional to the density gradient or the inverse of the flux Q. Thus, the

problem is to solve (10) with the boundary conditions (9) along with ¥ — ¢
as & — oo.

)\2

3.1 Series solutions

Following Yih [11], and in accordance with boundary conditions (9), we seek
a solution as an eigenfunction expansion in the form

W =04 ) Angn(E)sinnm. (12)
n=1
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The differential equation satisfied by g, (&) is

" (7\25 + %) g, —n*m’g, =0, (13)

where ¢g,(0) #0, and g, > 0 asn — 0.

The differential equation (13) has a regular singular point at & = 0 and so
we use the Frobenius method in powers of & [15]. Following Yih [11] we let

g = e?h(n) where n = A ‘i , and then we finally reach
1
W) + (‘1 " %) h(n) = 0. (14)

Equation (14) has solutions in the form of a Whittaker function [1], and the
appropriate solution is

o0 2E,2 n
onte) = [T (ME ) T enan, (15
where S
—M-TT
Kn = 2A2

At £ =0, g,(0) =1 from (15), and coefficients A,, are chosen to satisfy (9),
so that the stream function

— 2(—1)"
voc+ Y 2 (@)sinnc.

n7t
n=1

Streamlines for A = 1 and A = 8 are shown in Figure 2. For A = 1, the flow is
stronger nearer to the sink due to the higher flow rate, and so the streamlines
‘fill’ more of the channel. The flow coming from the bottom part of the duct is
relatively slow when A = 8 and so the streamlines fill less of the depth. This
effect is clearly seen in the velocity profiles shown in Figure 3. For the case
A = 8 there is a region near the bottom of the aquifer that is almost stagnant.
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Figure 2: Streamlines { = 0,0.1,...,1 of a stratified fluid flow due to a point
sink with A =1 (left) and A = 8 (right). Larger A indicates lower flow rate,

so at higher flow the streamlines fill more of the channel.
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3.2 Finite difference solution

To compute solutions for flows in which the density stratification is not linear
we approach the problem using the finite difference method. First we compare
the solution with that computed by Yih [11] for the case of a linear density
gradient, presented in Section 3.1, and then we consider a case in which the
density gradient is not linear. In particular we are interested in the case with
two layers of different density.

If we make a guess for W(&, (), at the grid points (&;, G), i1 =2,3,...,N —1
and j = 2,3,...,M — 1 separated by A and A(, respectively, then the
errors at the corresponding points for the finite difference form of (10) are

Eij = Vi {ACZ - % (% + 7\2&) AE,ACZ} + ¥y (—2A87 — 2A8)
1 /1
+ WHJ {ACZ + z (Z + 7\2&) AEAC2:| + Wi,j+1AE,2 + Wi,j,1AE,2,
i=2,...,N—1, j=2,....M—1.
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Figure 3: Velocity profiles in the duct at locations & = 0.75,1,1.5,3 (left to
right curves in each plot). Here the dots represents the eigenfunction solution
and the lines represent the finite difference solutions with A = 1 (left) and
A = 8 (right). At the lower flow rate (A = 8), flow is faster in a narrow layer
at t1he level of the sink.
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The values of Wi, Wi m and W5 5 are given by the boundary conditions (9). This
gives (M —2) x (N —2) equations in the same number of unknowns which can
be solved in Octave [10] using the nonlinear equation solver fsolve. Solutions
were computed using A = 1,8 for comparison with the series solutions. The
contours (not shown) are very similar to those shown in Figure 2 and the
comparative velocity profiles of the two cases are given in Figure 3 with good
agreement.

Now that we have verified the finite difference method we consider different
density strata. In particular, we are interested in the behaviour as the linear
gradient transitions into a two-layer strata with a region of lighter fluid sitting
on top of a region of heavier fluid.
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Figure 4: The nonlinear density profiles for different densities d; = 0.47t (left)

and d; = 0.497 (right). This is a typical density profile for stratified fluid as

used by Farrow and Hocking [5].
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4 Nonlinear density gradient

In order to consider the case of general stratification of the form p(¢) = f((),
we use the density profile considered by Farrow and Hocking [5]
LA R

1
p=1+ posz (arctan [dy(2C—1)] + d,), (16)

where pg, p1 are densities at the top and bottom, respectively, and py < ps.
The values of d; and d; determine the shape of the density profile, as seen in
Figure 4, and are related by the expression d; = arctan(d,).

In the upstream limit & — oo, ¥ — (). After differentiating p with respect
to ¥ we obtain

op 01 d 1
P _(B_)& : 1
oW (Po ) LT dEv—1)p (17)

Substituting (17) into (6) we find

%Y 1 ) oY oY B
5_5,2_(2_6 5f(w))a—£+a—cz—o> (18)
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Figure 5: The streamlines { = 0,0.1,...,1 for G =1 (left) and G = 8 (right)

with density profile value d, = 0.47t. Stronger flow has smaller G. These

correspond to the density profile in the left panel of Figure 4.
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where G2 = A?/. We now treat equation (18) as a boundary value problem
with the boundary conditions (7) plus % —0asé so0and 0< (< 1, and
solve using the finite difference method.

For lower G, discharge into the sink is very high, while for higher G, discharge
into the sink is low. Figure 5 shows the streamlines of the flow with density
stratification for d; = 0.47t, for a high flow case G = 1 and a low flow case
G = 8. As in the case of the linear density gradient, the flow remains stronger
over the full depth of the duct when the flow is stronger. This is emphasized
by Figure 6 which shows the velocity in the top layer is moving relatively
quickly towards the point sink, while the bottom layer is almost stagnant.
This effect is much stronger for the lower flow rate G = 8. Figure 7 shows
the velocity profiles for the stratification in which d, = 0.497. The stronger
density layering exaggerates the velocity layering effect. In Figure 8 the
density contours are shown for the gradient with d, = 0.47t, and this shows
that when G =1 the interface in the middle of the two layers is simply pulled
up in the vicinity of the sink, but for G = 8 the flow is not strong enough to
sustain a flow over the whole layer and overcome the density gradient, so the
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Figure 6: Velocity profiles at locations, & = 0.75,1,1.5,3 (left to right curves
in each plot) with density profile d; = 0.47, and G =1 (left) indicates the
strong flow and G = 8 (right) indicates the weak flow. The weaker flow starts
to exhibit a strong two-layer velocity structure.
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Figure 7: Velocity profiles at locations, & = 0.75,1,1.5,3 (left to right
curves in each plot) with G = 1 and with different densities obtained from
d; = 0.47 (left) and d; = 0.497 (right). The sharper density step (d, = 0.497)

leads to a distinct step in the velocity profile and lower velocity in the bottom
layer.
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Figure 8: Density contours p = 999,999.5,1000 for d, = 0.4 with G =
1 (left), which shows a high flow rate and water flowing over the whole depth,
and G = 8 (right), which shows a narrow layer develops near the top.
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fluid flows in a very narrow layer near the level of the sink. This indicates that
there is no valid solution for an initial profile with the mid-point of density
at ¢ = 0.5 and so there is no steady solution for this upstream condition
when G is greater than some value that depends on the flow rate and the
stratification.

5 Summary

We have considered axisymmetric flow of a stratified fluid into a point sink in
a vertically confined aquifer. First we considered the case where the density
stratification was linear. Two methods of solution were used. Following
Yih [11] a separation of variables approach led to an eigenfunction expansion
in Whittaker functions, and then a finite difference method was used. A
comparison showed good agreement between the two methods, verifying the
numerical approach.

The eigenfunction expansion method cannot be used for a more complicated
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nonlinear stratification in which the density gradient is not a constant, and
so the finite difference method was extended so that we could consider any
density gradient. Velocity profiles were plotted to understand the effects of
variations in flow rate and in density. We also identified the differences for
nonlinear density profiles and found regions where no steady solutions seem
to exist for some upstream density profiles and flow rates. Changing the
location of the point sink and considering fluids with a very sharp interface
are the next steps in this study.
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