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The effects of oscillating boundary conditions
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Abstract

We investigate the effect that oscillating ambient temperatures have
on the ignition times of supercritical stockpiles. Large stockpiles are
exposed to seasonal and diurnal temperature variation. We analyse the
effects of seasonal temperature variation. When considering ignition
within a year of construction, stockpiles built in spring ignited with
a lower critical parameter than those built at other times. Conse-
quently, seasonal temperature variation needs to be accounted for when
predicting stockpile ignition times.
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1 Introduction
The Basic Oxygen Steelmaking process produces excess dust. This dust is
collected and processed into a filter cake, which is used to construct large
stockpiles. In these stockpiles, temperatures of approximately 1000oC have
been observed. However, not all stockpiles reach this temperature, even when
built in an analogous manner. We seek to understand the causal links as to
why some of the stockpiles fail to reach these temperatures. High temperatures
lead to sintering of the filter cake, where the underlying structure changes.
The new structure increases the strength and particle size, which allows it
to be recycled on site [2]. High temperatures are desirable to improve the
recycling process.

The stockpiles are left exposed to seasonal and diurnal ambient tempera-
ture variations. We investigate the effects that seasonal variations have on
the propensity of these stockpiles to oxidise. The oxidation reactions are
exothermic and the behaviour is similar to stockpiles seen in the spontaneous
combustion literature [1]. Under this framework we define ignition as when
the stockpiles reach a certain temperature.

Although the theory of spontaneous combustion is well established, there has
been comparatively little work investigating the effects of periodic boundary
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Table 1: Parameter values.
Parameter Symbol Value Units
Activation Energy E 8.91× 104 Jmol−1
Ideal Gas Constant R 8.314 Jmol−1K−1

Mean Ambient Temperature Ta 290 K
Temperature oscillation amplitude To 5 K
Height Ly 10 m
Length Lx 20 m
Thermal Diffusivity α 30 m2 year−1
Oscillation Frequency ωY 1 year
Phase Shift φ 0 -
Heat of Reaction Q - J kg−1
Density ρ - kgm−3

Specific heat c - J kg−1K−1

Thermal Conductivity k - Jm−1 year−1
Pre-exponential factor A - year−1

oscillations. We consider the model used by Novozhilov [3]. This contains a
single Arrhenius reaction and a sinusoidal boundary condition. We extend this
model to a two-dimensional domain, which will provide a stepping stone to a
three-dimensional model. Roy [4] used a similar model in a two dimensional
domain. However, this only included a sinusoidal boundary condition on one
boundary; this is indicative of modelling an experimental procedure rather
than modelling exposed stockpiles.

2 Mathematical model
The temperature T measured in Kelvin (K), is modelled using a reaction-
diffusion equation with an Arrhenius reaction term
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where the parameters are defined in Table 1. We consider a rectangular
domain with 0 6 x 6 Lx and 0 6 y 6 Ly . A no flux boundary condition is
considered on the base y = 0 , and the boundary condition on the other sides
is

T = Ta − To sin
(
2πt

ωY

+ φ

)
.

The phase shift φ corresponds to when the stockpile is constructed during
the year. We consider two cases: To = 0 , where there are no oscillations,
which we refer to as a static boundary condition; and To 6= 0 , where there are
temperature oscillations, which we refer to as a dynamic boundary condition.

To obtain dimensionless variables these equations are scaled by
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y
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, x∗ =

x
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,
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L2y
t , u =

E

RT 2a
(T − Ta) ,

where α = k/ (cρ) . For convenience we only consider the scaled equations
and drop the ∗ superscript. Equation (1) reduces to
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is the Frank–Kamanetskii (fk) parameter. The boundary conditions become
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)
, (3)

where uo = (E/RTa) (To/Ta) and ω = αωY/L
2
y .
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The parameter ε is often small, ε � 1 . This allows us to approximate
1 + εu ≈ 1 for small enough values of u. When u becomes large we have
ignition occurring. To simplify the notation we state the approximation as
ε = 0 . This allows for an analytic form of the steady state solution.

For the purpose of our analysis we need to define an ignition criteria. We
define the ignition time tig as the time taken for the maximum temperature
within the stockpile to reach u = 100 . This scaled temperature corresponds
to a temperature of approximately 800oC. In the practical application this
temperature is considered sufficient for ignition. We consider a stockpile to
be subcritical if the scaled temperature never attains a maximum of u = 100 .

With the absence of an analytic solution, the critical parameters are deter-
mined numerically. To obtain exact values, the numerical model needs to be
run for an infinite amount of time. Since this is not possible, a reasonable
cut-off time needs to be selected. For the one-dimensional model cut-off
times of tf = 0.3, 1, 10, 100 were selected. In the two dimensional case we
used the same cut-off times as the one-dimensional case, except we excluded
tf = 100 due to high computational time. With the prescribed parameters,
tf = 0.3 corresponds to one year. This is a realistic cut-off time for the types
of stockpiles under investigation. The critical parameter δcr is defined such
that if δ > δcr , then ignition is achieved before the cut-off time.

3 Results
We initially consider two specific cases, Lx = 2Ly and Lx = ∞ . For the
case where Lx = 2Ly the reflective condition prescribed at the boundary
y = 0 means that we can instead solve the problem on the square with
non-dimensional length Lx = 2 . This solution restricted to the domain
(0, 2) × (0, 1) will solve our equation. For the approximation ε = 0 and
Dirichlet boundary conditions, the critical fk value is δcr = 1.7 [1]. For
Lx � Ly we approximate the model by a one-dimensional model without
diffusion in the x direction. For the approximation ε = 0 and the static
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Table 2: The critical fk parameter δcr in a one dimensional stockpile for
different cut-off times, with uo = 0.637 , ω = 0.3 and φ = 0 for the cases
with oscillations.

ε Oscillations tf = 0.3 tf = 1 tf = 10 tf = 100
0 no 3.701 1.582 0.899 0.877

0 yes 3.428 1.537 0.895 0.875

0.027 no 3.910 1.658 0.927 0.904

0.027 yes 3.639 1.612 0.924 0.901

boundary condition, the critical fk value is δcr = 0.88 [1]. Critical fk values
obtained from our simulations, displayed in Table 2, agree with values stated
by Bowes [1] to the given number of significant figures.

Table 2 suggests that for the larger cut-off times (tf = 10, 100) the dynamic
boundary condition does not have a significant influence on the critical fk
parameter, with a slight reduction observed when the oscillations are added.
However, there is a significant difference in the ignition times. For the case
where ε = 0 , δ = 0.89 , the ignition times are tig = 14.00 and tig = 12.04

for the dynamic and static boundary conditions, respectively. Similarly, for
ε = 0.027 , δ = 0.92 and the static boundary condition tig = 12.40 , whilst
with the dynamic boundary condition tig = 11.67 . This indicates that, for
a given stockpile, the ignition time is different once the dynamic boundary
condition is applied.

In two dimensions, Table 3 shows that the effects of the dynamic boundary
condition are more prominent than in the one-dimensional case, with a larger
reduction in the critical fk parameter observed when the oscillations are
added. For the ε = 0 case, the oscillations cause stockpiles to ignite that are
subcritical when considering a static boundary condition. The one-dimensional
stockpiles have a lower critical value so one would expect, as we increase the
length Lx of the two-dimensional stockpile with fixed height Ly, the critical
parameter will decrease. This relationship is displayed in Figure 1 for both
dynamic and static boundary conditions.
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Table 3: The critical fk parameter δcr for a two-dimensional rectangular
domain with uo = 0.637 , ω = 0.3 and φ = 0 .

ε Oscillations tf = 0.3 tf = 1 tf = 10
0 no 4.072 2.20 1.71

0 yes 3.615 2.14 1.69

0.027 no 4.294 2.3 1.76

0.027 yes 3.843 2.23 1.75

Figure 1: The critical fk variable δcr for ignition to occur within a year, as
the ratio of side length to height is increased with ε = 0.027 and φ = 0 .
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Figure 2: The effects of changing the stockpile construction time φ on the
critical fk parameter δcr, for stockpile ignition within a year (tf = 0.3).

So far our analysis has assumed the stockpiles are constructed at a specific
time of year, specifically spring where φ = 0 . For tf = 0.3 , Figure 2 indicates
which stockpiles will ignite within a year. Certain stockpiles constructed in
spring will ignite whilst identical ones constructed in autumn will not.

When the final time is increased to tf = 1 , Figure 3 shows that the critical
fk parameter becomes less sensitive to the construction date. Another key
observation from comparing Figures 2 and 3 is that on increasing tf there
are more starting points where the critical parameter is lower than the static
boundary condition. Figure 3 also shows a shift in the oscillation peak towards
φ = 0 .

We now consider the ignition times as the fk parameter δ is varied. Figure 4
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Figure 3: The effects of changing the initial construction time φ on the critical
fk parameter δ for a final time tf = 1 , corresponding to just over a three
year period.

compares the ignition times for the static boundary condition with the dynamic
boundary condition. Stockpiles constructed in spring, φ = 0 , are plotted
along with stockpiles constructed half a year later, φ = π . For the larger
values of the fk parameter, there is a distinct difference between the ignition
times in each case. For smaller values of the fk parameter the ignition times
for stockpiles constructed later (φ = π) are lower than those with the static
boundary condition. This indicates that, as we consider longer periods of
time, the dynamic boundary condition reduces the ignition times. Figure 4
suggests that there will exist some time such that, regardless of when the
stockpile is built, the effect of the dynamic boundary condition will cause the
stockpile to ignite earlier than is the case for the static boundary condition.
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Figure 4: The ignition times as the fk parameter δ is varied.

4 Numerical validation
The numerical scheme used was a finite difference scheme which is second
order in space and first order in time, with an interval width of 0.02 and a time
step of 5× 10−6 . The values obtained for the ignition times are dependent
on the type of numerical scheme used. It is important to show that our
numerical scheme converges to the true solution. We validate the scheme by
comparing numerical solutions with different interval widths. We compared
the solutions with 50, 100, 200, 400, 800 intervals for the one dimensional
model, to the solution with 1600 intervals. By halving the interval width
at each step, the solution with 1600 intervals has common nodes with the
solutions corresponding to each other interval width. We use this to determine
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Figure 5: The log2 (Error) of the numerical scheme in the spatial variable at
time t = 1 .

a pointwise convergence at each node. The resulting error vector is

Errori = |u1600,i − ui| , (4)

where u1600,i is the solution vector with 1600 intervals restricted to the common
nodes of the solution vector with i = 50, 100, 200, 400, 800 intervals. Figure 5
plots each error and indicates that as we halve the interval width, the solutions
converge to the solution provided by the most refined grid. A constant
difference at each step indicates that the error is reduced by the same factor.
This is expected as the interval width is being halved at each step. This
suggests that the numerical scheme does not have any unexpected behaviour.

We also check convergence in time. We selected a point at the centre of the
domain and tracked the temperature over time. At each successive iteration
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Figure 6: The log2 (Error) of the finite difference scheme at a point in the
centre of the domain.

the time interval was halved and the temperature compared to simulation
with the shortest time interval. Figure 6 displays how the solution converges
in time.

Figures 5 and 6 indicate that the numerical schemes are converging in a
consistent manner. This provides some validation for our numerical algorithm.

5 Conclusion
The dynamic boundary condition has a significant effect on the ignition
times of stockpiles. Stockpiles that are considered subcritical with the static
boundary condition, are supercritical with the dynamic boundary condition.
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Our numerical investigation demonstrates that identical stockpiles can ignite
at different times, depending on the stage of the seasonal cycle they are
constructed. Our study suggests that stockpiles built in spring will ignite
quicker than those constructed at other times, whilst those constructed in
autumn will take the longest time to ignite.

The effects considered in this study are limited to seasonal temperature
variation. The effect of daily temperature variation was not considered. The
long term simulations conducted suggest that, after extended periods of time,
oscillations may reduce the critical values of the fk parameter, for all start
times. This suggests that daily variations may reduce the critical parameters.
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