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Block monotone iterations for solving coupled
systems of nonlinear parabolic equations
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Abstract

The article deals with numerical methods for solving a coupled
system of nonlinear parabolic problems, where reaction functions are
quasi-monotone nondecreasing. We employ block monotone iterative
methods based on the Jacobi and Gauss—Seidel methods incorporated
with the upper and lower solutions method. A convergence analysis
and the theorem on uniqueness of a solution are discussed. Numerical
experiments are presented.
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1 Introduction

Several problems in the chemical, physical and engineering sciences are
characterized by coupled systems of nonlinear parabolic equations [5]. In
this article, we construct block monotone iterative methods for solving the
coupled system of nonlinear parabolic equations

Ugt — AqUa(X,y, t) + fo(x,y,t,u) =0, (x,y,t) € Qr =w x (0, T], (1)
w={xy):0<x<l, 0<y<l},

U (X%, Yy,t) = gulx,y, 1),  (x,y,t) € 0Q7 = 0w x (0, T],
Ua(%,Y,0) = ba(x,y), ((y)lew, o=1,2,

where u = (uy,u;), 0w is the boundary of w, and 1; and 1, are positive
constants. The differential operators Ay, o = 1,2, are defined by

A‘xu(x,y, t) = etx(ucx,xx + uoc,yy) )

where ¢4, @« = 1,2, are positive constants. It is assumed that the func-
tions fu(Xx,y,t,u), gua(x,y,t) and P,(x,y) are smooth in their respective
domains.

Block monotone iterative methods, based on the method of upper and lower
solutions, have been used to solve systems of nonlinear elliptic equations [1, 3],
as well as systems of scalar [8] and nonlinear [6] parabolic problems. The basic
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idea of block monotone iterative methods is to decompose a two dimensional
problem into a series of one dimensional two-point boundary value problems.
Each of the one dimensional problems can be solved efficiently by a standard
computational scheme such as the Thomas algorithm. Pao [6] and Zhao [8] did
not consider two important points in investigating the block monotone iterative
methods, namely, a stopping criterion on each time level and estimates of
convergence rates, both of which are considered in this article.

In this article we construct and investigate block monotone iterative methods
based on the Jacobi and Gauss—Seidel methods for solving the nonlinear
system (1) with quasi-monotone nondecreasing reaction functions f,, ac = 1,2.
We extend the block monotone iterative methods of Pao [6] to the case where
on each time level, nonlinear difference schemes are solved inexactly and give
an analysis of convergence rates of the block monotone iterative methods. In
Section 2 we consider a nonlinear difference scheme which approximates the
nonlinear parabolic problem (1). Constructions of the block monotone Jacobi
and Gauss—Seidel iterative methods are presented. A convergence analysis
of the block monotone methods is discussed. A theorem on uniqueness of
a solution to the nonlinear difference scheme is given. Section 3 presents
numerical experiments.

2 Block monotone iterative methods

On @ = wUdw and [0, T] we introduce a rectangular mesh w" = W™ x w™
and w?, such that

Thx __ s . _ 1. _
w —{Xh 1_0»]>~°-)Nx» XO—O> XN —1> hx—XiJr]_Xi})

w —{Uj) j:0>1>°°->Ny; UOZO> UNy:]; hy:‘Jj+1—Uj}>
w'={tp,=mt, m=0,1,...,N;; N=T}.

For a vector mesh function Wy = (U iimy Uziim) s (1,3) = (xi,y;) € w"

m > 1, we use the implicit difference scheme

Y

Lo ij,m Ueijm + % (Ugijm — Ugijm—1) + faijm(Uym) =0, (i,j) € w"; (2)
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u“»ijam = Gaij,m » (i)j) c awh, m>1;
u(x»ijyo :I'I)OC,ij) (i)j) c (I)h; X = 1’2’

where Ug jm are approximations of u(x( X, Y, t,u), at mesh points xi, yj, tm,
and dw™ is the boundary of the mesh w™ ={(x;,y;),1=1,2,...,Ny—1,j =
1,2,...,Ny—1}. The linear difference operators Lo jm, & = 1,2, are defined
by

Loc,ij,muoc,ij,m = —&x (Diuoc,ij,m + Diuoc,ij,m) )

where Diua,ﬁ,m and Déumj’m are the central difference approximations to
the second derivatives

o ucx,i—l,j,m - zucx,ij,m + uoc,i—H,j,m

2
Dxucx,ij,m hz )
X
Dzu o uoc,i,jfhm - zuoc,ij,m + uoc,i,j+1,m
y oay,m hz *
Y

The vector mesh functions U and U are ordered upper and lower solutions
of (2) and they satisfy the inequalities

Unijm < Ugim,  (1,§) € @ (3)
( aijm T T 1) ﬂoc,ij,m + foc,ij,m(ﬂij,m) - T_]ﬂcx,ij,m—l >0, (4,j)ew;
(Lojm +T) ﬂoc,ij,m + foc,ij,m(ﬁij,m) — T_]aoc,ij,m—l <0, (i,j) € wh;
Uou], < Jayijym < ﬂoc,ij,mv (i,j) € dw™, m>1;

Uo < oy < Uagio,  (1,5) € @

For a given pair of ordered upper and lower solutions U and ﬁ, we define
the sector

<ﬁm> ﬁm) = {Uij,m : ﬂij,m < Uij,m < U-U-’m, (1,]) € (I)h, m> 1} .

We assume that on <ﬂm,ﬁm) the vector function fy ., in (2) satisfies the
constraints

Coijm < [foc,ij,m(uij,m)]ua < Cxijmy,  Wigm € <ﬁm>um>> (1,j) € "5 (4)
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0 < — [fagijm(Uym)l,, , < Saiim,  Uym € (Up, W), (i,j) € @™ (5)
for o # « and o, = 1,2, and where (fy),, = aai_iv (folu, = =,

functions Cyijm, Sayjm are non-negative bounded functions and Cyjm are
bounded functions on w". The vector function fijm(UWijm) is quasi-monotone
nondecreasing on <ﬁ, 1N1> if it satisfies the inequality — (fa)ij,m(uij)m))u“/ <
Saijm 0 (D).

To construct block iterative methods, we write the difference scheme (2) at
an interior mesh point (i,j, m) € w"® in the form

T
oc,ij,mucx,ij,m o loc,ij,muoc,i—l,j,m - Toc,ij,muoc)i—k],j,m - boc,ij,muoc,i,j—1,m (6)
_ —1 s o h.
— qoijym Uaijr1,m = —Faijm (Ui gm, Uzggm) + T Ugiym—1, (i,j) € w™;
. .. h . _ L Th.
uoc,ij,m - goc,ij,m) (1»]) € 0w ) m 2 1 ) uoc,ij,o - ll)oc,ij ) (1')]) cw;
€x €
loci'm:roci'm:_ boci'm:qoci'm:_
Uy Yy hz ) U U hz )
x Y
T _ —1 —
o, ij,m doc,ij,m +T ) doc,ij,m - 1oc,ij,m + T'oc,ij,m + boc,ij,m + qoc,ij,m .

Forx =1,2,1€J=7JU037 with I ={1,2,..., Ny — 1} and 37 = {0, N, }, we
define column vectors and diagonal matrices

Woim = (Ugiim -« -y Uaing—1m) "

Foim(Wiim,Usim) =

(Faistym (Wi my Uzitm) s -« oy Foing—1m (U1 iy —1ms ul,i,Ny—Lm))T )

Loim = diag(laiimy «« o5 baiNg—1,m) s Rogim = diag(Tagitmy -+ ToiyNg—1,m) 5

T
q)oc,i = (¢a,i,0> e )Ij)oc,i,Ny) .

Then the difference scheme (2) is written in the form

T
(x,i‘muoc,i,m - L(x,i,muoc,ifhm - Roc,i,muoc,i+1,m

= —Foim (U g Uzign) + T Woimer, 1€7; (7)
ufxviym = goc,i,m) i’ E aj) m 2 1 ,
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oc,t,O ll’)OCI) iEj; 0621,2,
where the tridiagonal matrices

T — T .
Aoc,i,m - [_bcx,ij,rm docl],m) qoc,ij,m] y )= 1, ceey Ny — 1 ,

forieJ, «=1,2, m > 1. The elements of the matrices Ly;m and Ryim
are the coupling coefficients of a mesh point to Ugi—1jm and Ugit1jm
respectively, for j =1,2,..., Ny — 1.

On each time level m > 1, the upper {Umm} and lower {Umm} ied,
ax=1,2, m > 1, sequences of solutions, are calculated by the following block
Jacobi and Gauss—Seidel iterative methods

(A;;lm + C“’i’m)zf(:i)»m - T]L“yi»mz(n') - _ch,i,m (u(n ) ch,i,m—hu(n' )> )

!
oai—1,m x,i,m ) ofii,m

(8)

(n—T1) (n—1) 1) (n—1)
K(X»i)m (uoct m ) uo‘vivmf‘l ) uo;ll m) AF(;:( i, muocnl m Lo‘ai)muf’:}t*1 ,m
1) —1 — .
_R uo:i+1m+]:0”m<u1(?il,m)’u£1m )+T ]ucxlm 1y 163;

(0)
(Tl) — g )') _u 1-1 ) n:1, ; .
Zoc,i,m_{oixlm oo n>2, ieadl, mz=1;

. ) _qqn / r_
Ugyip = =Py, 1€7; U(x,i,m—ll m) & #Fo, o =12,

«,i,m )

oi,m ) o/ i,m

where Kyt (U5, U1, US ) ) o # o o = 1,2,m > 1 are the

residuals of the block difference scheme (7) on Umm , zero column vector O
has Ny —1 components, Uyim, 1€ J, « = 1,2, are the approximate solutions
on time level m > 1, and n,, is a number of iterations on time level m > 1.
For n = 0 and n = 1, respectively, we have the block Jacobi and block
Gauss—Seidel methods.
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2.1 Monotone convergence of iterative sequences
Introduce the notation
Foim(Wiim Woim) = CoimUgim — Faiim (Wi imy Uzim) 9)
Coiym = diag(Cogiymy « s CaiNg—1ym)y 1€J, a=12, m=>1,

where cqj,m are nonnegative bounded functions. Lemma 1 and Theorem 2
provide a monotone property of g i m(UWyim, Uzim) -

Lemma 1. Let ui,m - (u1,i,m)u2,i,m) and vi)\m :~ (vhi,m)vz,i,m) ’ ie j:
m > 1, be vector mesh functions in the sector (Umy, Uy) , such that Uy;m >
Vaim,1€J, x=1,2, m > 1. Suppose that the right and left inequalities
from (]) and (5), respectwely, are satisfied. Then

roc,i,m(ui,m) 2 roc,i,m(vi,m) ) i € j) X = ]>2) m 2 ] . (10)
Al-Sultani [2| proves Lemma 1.

Theorem 2. Let (ﬂ]’ij’m)tlz’ij’m) and (fh 1],m)ﬂ21], ) be ordered upper and
lower solutz’ons (3). Assume that f(x, = 1,2, satisfy (/) and (5). Then

the upper {U } and lower {U

generated by (8), with U = Ulm and U = Wi, converge monotonically
such that
~ (n—1 ~ ~ ~ (n—1
u(ﬂ ) < u(n) < u(n) < u(n )

onim oniym X

}163 x=1,2,m>1, sequences

OL‘LTﬂ. O(lm

a,i,m ai,m iEj, 0‘21)2> m>]) (11)

where the inequalities between vectors are in component-wise sense.

Proof: We consider the case of the Gauss—Seidel method with n =1 in (8).
The case of the Jacobi method with 1 =0 in (8) can be proved by a similar

manner. Since U i€ J, m > 1, are initial upper solutions (3), from (8)

we have

1,m’

ATHZCXH LOHJZOH 11+C0€11Zoc11 \O> IEJ, (12)
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~(
7.0 <0, iedl; a=1,2.

Taking into account that Lyim > O, (A;yi,m—FC(x,i’m)_] >0,i€eI,m=>1]1,

Corol. 3.20]), where O is the (Ny —1) x (Ny — 1) null matrix, for i =1 in (12)
=~ =~
and fo,é’] < 0, we conclude that Z((XJ)J <0,a=1,2. Fori=2in (12),
~( ~(
using L1 > O and ZEXJ),] < 0, we obtain fo’;J <0, a«=1,2. Thus, by
induction on i, we can prove that

<0, i€d, a=1,2. (13)

Similarly, we can prove that

S -

0(111120) iEj) (X«:1,2. (14)
We now prove that
~ (1) ~ (1) . =
uayiy] < o,i, 1 1€ J) X = 1)2 . (15)
(n) ~ (n) A~ .
Let Wi =Wy, —U,;;,1€J, 0 =1,2. For a« =1, from (8) and using
notation (9), we have
1 1 1
1T,iW1(,i),1 — L1,i,1w1(,1)71,1 + C1,i,1W1(,i),1 = (16)

~(0) ~(0) ~(0) ~(0) 0 .
Tit (Wy g, Upiy) — Fran (W, Wy y) + Rt WS, €7,
wil =0, ied.

From (10), Ryim > O and Wc(;,)i),m > 0, we obtain

1 1 1 . 1 .

T,i,]wg,i)J + Cl,iJW](,i),] > I—LiJW](,i)—],l , 1€, Wl(,i),l =0, i€0d7J.
(17)
Taking into account that (Af;; 4+ Cy11)”' > O0,i€J, fori=11n (17) and
W1(]o),1 =0, we conclude that Wg]&] > 0. Fori=21in (17), using L1 5; > 0
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and W%]]))] > 0, we obtain W1(]2)1 > 0. Thus, by induction on i, we can prove
that -
wil >0, ied.

By following a similar argument, we can prove (15) for o« = 2.

We now prove that U(x” and UM1, ieJ, o« =12, are upper and lower
solutions, respectively, for (3)—(8) From (8), by using notation (9), we
conclude that

( ) = (1) ~(0) ~(0)
K“»U ( O(l]’ll)(x,l) oc’ll)) = _R“»iylzcxiJr]] + FOCU (uoc,i,l)uoc',i>

- rcx,i,l (uo” 1 uoc’,l 1>

foried, but « # &, @, &’ =1,2. From (13) and taking into account that
Rii1 > 0,1 €7, by using (10), we conclude that

) .
ch,i,]( omhll)ocu o(/”)}O, 163) o(’;,éo(, “)“/:])2- (18)

In a similar manner, we obtain

1) .
K(X,i,]( om.])ll)ocw OU,‘L]) go) 163) OC/7£O(, “,O(/:])Z.

(1 (1) ~(1
From here, (3), (15) and (18), we conclude that (U1 11,11 ’1),1) (u§,1f1,u§,if1) :
i € J, are ordered upper and lower solutions of (3)-(7). By induction
on n, we can prove that {UM1} {UM1} ied, a=1,2, are, respectively,

monotone decreasing upper and monotone increasing lower sequences of
solutions. Thus, (11) holds true on the first time level m = 1.

Since U 2 = Umz, ie J « = 1,2, on the second time level m = 2,
from (7), we obtain

~ ~(n) ~
Koc,i,Z (uoc,i,2>u i uoc’,i,Z) =

1,19
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T ~ ~ ~ gy ()
AiaWaiz — LaioWeai 12 — RuioWeaiv12 + Faio(Uagi2, U, i2) — T uom,] y

foried, o #a, x, =1,2, where U 1 are the approximate solutions on
the first tlme level m=1 deﬁned in (8). TFrom here and taking into account

that from (11), UL < Ugir, i€, a=1,2, it follows that

i1

(n1)

Kai2 <u(x,i,2> U(x,i,nuoa,i,z) > Ky (ucx,i,bucx,i,huoc/,i,Z) >0, (19)

which means that Umz = ch,i,z, ie 57 « = 1,2, are upper solutions with

respect to U ied, a= 1,2 . Similarly, we obtain

oc117

sz(u 12,1.1 lAlo(/,m)gO, 1eld, OC/#OC, OC,OCIZ],Z,

0(11’

which means that U Um,z, icyg , = 1,2, are lower solutions with

oc12 -
respect to UM1, ieJ, o =1,2. From here, (8) and (19), on the second
time level m =2, we have

= (1) (1) .
(AZC,I,Z + chvi»Z) Z g L“»iyzzoc,i—l,z ) 1 6 j) X = 1)2 ¢ (20)

o2

Taking into account that Lyia > O, (AL, + Cai2) '>0,i€J,a=1,2,
~(1 ~(1

and Z;g)z < 0, for i =1 1in (20), it follows that Zim),z <0, a=1,2. From

1 5 (1) . .
here and (20) with i = 2, we conclude that Z,,, <0, « =1,2. By induction
on i, we can prove that

= (1) . =

Z,,<0, i€J, a=12. (21)
Similarly, for initial lower solutions ﬁmi,z, ied , . =1,2, we can prove that

= (1) . =

Z,:,20, i€J, a=1,2. (22)

The proof that Umz and Umz, ie 5, o« = 1,2, are ordered upper and lower
solutions (3) repeats the proof on the first time level m = 1. By induction
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~(n) ~n), . = .
on n, we can prove that {UO:-I)Z}, {Uo:i)z}, 1€7J, a=1,2, are, respectively,

monotone decreasing upper and monotone increasing lower sequences of
solutions. Thus, (11) holds true on the second time level m = 2. By
induction on m, we can prove (11) form > 1. [ )

2.2 Existence and uniqueness of a solution to the
nonlinear difference scheme

Assume that the time step T satisfies the inequality

1
T<max—-—, PBm=max(0,sm—cC,), (23)
m>1 m
Cn=min | min cuyn|, Sm=max max [Seijml,
a=1,2 [(w’)ewh “’”‘m] =12 (ij)ear
where ¢, and sqijm, (1,j) € @, « = 1,2, m > 1, are defined in

(4) and (5), respectively. When 3, =0, m > 1 there is no restriction on T.

Theorem 3. Let (W gjmy Uzgjm) and (W gm, Usgim), (1,j) € O™, m > 1,
be ordered upper and lower solutions, respectively, of (3)-(7). Suppose that
the functions fo, 0« = 1,2, in (1) satisfy (4), (5), and assumption (23) on
the time step T is satisfied. Then the nonlinear difference scheme (7) has a
unique solution.

Al-Sultani [2| proved Theorem 3.

Remark 4. Al-Sultani [2] proved the existence of a solution to the nonlinear
difference scheme (2) under the inequalities (fqijm(Uijm)) . S Coyijm and
0 < — (faijm(Wijm)), , from (4) and (5), respectively.

u
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2.3 Convergent analysis

Instead of (4), we now assume that

Sm < (foc,ij,m(uij,m))u(x < Coc,ij,m) uij,m S <ﬂm)um> ) (1>]) € ‘-I)h> (24)
where o = 1,2, and sy, is defined in (23).

Remark 5. The inequality sm < (faijm(Uijm))u, in (24) can always be
obtained by a change of variables. Boglaev [3| provides more details.

A stopping test for the block monotone iterative methods (8) is chosen to be

xa,ij,m(u(%,m» W ij,m—1y Ug},)ﬁ,m) ” <9, (25)

max max
0‘:]’2 (1»])€wh

where K“,ij,m(u((:i)j)m, U ijmt1, U

(x,)lj)m

), (1,j) € W, 06’ # o, 0 =1,2,
are residuals of the nonlinear difference scheme (7), {U i (L)€ —
1,2, m > 1}, are generated by (8), and 0 is a prescribed accuracy. On each
time level m > 1, we set up Ugyijm = U“anm, (1,j) € w™, a« = 1,2, such
that n,, is the minimal number of iterations subject to (25).

Theorem 6. Let (Uy gjmy Upgm) and (Us gm, Uzgim), (1,3) € @, a=1,2,
m > 1, be, respectively, ordered upper and lower solutions of (3)—(7). Suppose
that the functions fy, 0« = 1,2, in (1) satisfy (4), (5) and the time step T satis-

fies (23). Then, for the sequence of solutions {Umm, ied,a=1,2 m>1}
generated by (8) and (25), we have the estimate

max max [Wam — UG [lon < TO, (26)

m>1 a=1,2

where Umm, ied, o = 1,2, m > 1, are the unique solutions to the
nonlinear difference scheme (7).

Al-Sultani [2| proved Theorem 6.
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3 Numerical experiments

As a test problem we consider the Volterra-Lotka cooperating model [4],
which is governed by (1) with the reaction functions

fi(w,w) = —w (1 —w + auy), fHr(u,u) =—w(l+au —uy), (27)

where u, > 0, « = 1,2, are the populations of two species with a symbiotic
relationship, and a., o« = 1,2, are positive constants which describe the
interaction of the two species. The pairs (U m, Uziim) = (Ki,K;) and
(ﬁhij,m, ﬁz,ij,m) = (0,0) are ordered upper and lower solutions, respectively,
on each time level m > 1, with

1 1 a;+1
Ki=aK;+1, K; > max (-(7\1 —1); Ay — (G —1); &y 1—> ,
a a T—aa;
where A\, = maXxy)ew ’g(x(xyyﬂ ) Co = maXxy)ew N)oc(xay)’ , X = ])27 under
the assumption a;a; < 1. From here and (27) in the sector (0,K), K =
(K1, Kz), we conclude that f,, o = 1,2, satisfies (4) and (5) with ¢, = Kq,
x=1,2.

Since the exact solution of the test problem is unavailable, we define the
numerical error and the order of convergence of the numerical solution as,

respectively,
) E(N)
E(N) = max |:Iila€)iu ‘U.MJ’ (N) — Uy 55 (NY) ] ,  Y(N) = log, (E(ZN) ’

where Ll(X el m(N), o = 1,2, are the approximate solutions generated by (8)
with number of mesh points N, ns is the minimal number of iterations subject

o (25), and Uang m(Ny), o« = 1,2, are reference solutions with number of
mesh points N,.

We choose ¢1 = 0.7, ¢, =1, a; =05, a; =1, gu(x,y,t) =0, (x,y,t) €
0Qr, v = 1,2, and Pu(x,y) =1, (xyy) € w, x = 1,2, in (1). We take
§ =107 in (25) and N, = 256 in the reference solutions.
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Table 1: Error and order of convergence of the nonlinear scheme (6).

N 8 16 32 64 128
E 346 x107" 9.02x102 273 x102 5.65x10° 136 x10~°
Y 1.94 1.72 2.27 2.06

Table 2: Number of iterations ng per time step and CPU times for the block
methods.

N 8 16 32 64 128
the block Jacobi method
ns 7.23 10.13 17.14 2947 41.99

CPU (s) 0.02 011 091 14.17 225.99

the block Gauss—Seidel method
ns 4.00 514 820 16.48 23.615
CpU (s) 0.01 0.06 047 7.34 117.62

In Table 1, for different values of N = N,, Ny, we present the error E(N) and
order of convergence y(N). The data in the table indicate that the numerical
solution of the nonlinear difference scheme (2) converges to the reference
solution with second-order accuracy in the space variables. In Table 2, for
different values of N, T = 0.5 and T = 0.01, we present average numbers
of iterations ng per time step and corresponding CPU times for the block
monotone methods. The data show that the block monotone Gauss—Seidel
method is approximately twice as fast as the block monotone Jacobi method.
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