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Draining under gravity in steel galvanization

G. C. Hocking1

(Received 23 February 2020; revised 7 May 2020)

Abstract

The problem of the coating of steel has been considered in several
Mathematics in Industry study groups. In this process, after passing
through a bath of molten alloy, steel sheeting is drawn upward to allow
draining under gravity and stripping using an air knife, leaving a coating
of desirable thickness. Here we discuss some aspects of the problem
and in particular the gravity draining component. The problem is a
very nice introduction to industrial modelling for students, but is also
relevant for manufacturing.
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1 Introduction
The process of galvanizing steel has been considered by several Mathematics
in Industry study groups [3, 4, 5]. The steel is passed through a bath of
coating material and then drawn upward so that some of the liquid coating
drains under gravity, and excess can be stripped using an air jet known as an
air knife. Mathematical models provide an accurate calculation of the surface
coating thickness, and so coatings can be pre-determined by the company,
as required. The study groups were asked to investigate the formation of
flaws such as pitting and gaps in the coating. However, in this article we
discuss some of the basic aspects of the problem and in particular the gravity
draining component for objects of different shape.

In the coating process, the sheet is first coated with aluminium (alloy won’t
‘stick’ on steel) and then heated to several hundred degrees. The sheet is
then passed through the alloy bath at about 1-2m/s. A high velocity air jet
(called an air knife) strips off excess liquid, which falls back into the bath
as the sheet continues upward. As the sheet rises, it cools and eventually
solidifies. The coating thickness is determined in the region just above the
air knife, but before the solidification has occurred (see Figure 1).

The coating problems were brought to the study groups due to the formation
of flaws in the coating as more extreme industrial conditions, such as thinner
coatings and poorer quality steel, were employed. In particular, pitting on the
surface [3, 4] and the formation of gaps in the coating on the edge of the sheet,
called ‘bananas” [5]. These flaws appear in different flow and configuration
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Figure 1: Sketch of the air knife and coating configuration.
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regimes. Studies of these flaws describe the effect of the air jet on a broad
flat sheet, and so consider almost uni-directional flow to derive a partial
differential equation to compute the coating thickness under different air knife
conditions of pressure and shear stress [3, 4, 5]. However, in this work we
start to consider the flow for objects of more general shape in the absence of
the air knife, when the coating drains under gravity.

2 Unidirectional flow
In cases in which the coating drains under gravity, the so-called unidirectional
flow assumption is appropriate. This is a good starting point for an analysis
and is also an excellent example to introduce the ideas of industrial modelling
to students in a fluid mechanics course!

Assuming steady flow of a viscous, incompressible fluid, define a coordinate
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system such that x is directed vertically, and flow velocity in that direction
is denoted u. Then, if the flow is unidirectional, the horizontal and lateral
velocities are zero, that is v = w = 0 . Implementing these assumptions in
the continuity equation, we find (noting that all terms in red are zero)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 ⇒ ∂u

∂x
= 0 ,

so that u(y, z) is a function of y and z only. The momentum equations, with
density ρ, pressure p, gravity g and kinematic viscosity ν, are
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+w
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1
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+ ν∇2v ⇒ py = 0 ,

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+w

∂w

∂z
= −

1

ρ

∂p

∂z
+ ν∇2w ⇒ pz = 0 ,

meaning that p(x) is a function of x only. The result is the Poisson equation

ν (uyy + uzz) = g+ p
′(x)/ρ . (1)

For a broad, flat sheet the flow can be considered as two dimensional, in
which case u(z) is a function only of z. The boundary conditions are: at the
interface between the steel and the alloy the fluid sticks; on the free surface
of the alloy coating z = h(x) ; there must be no shear stress uz = 0 (or there
would be transient motions); and the pressure should be at the atmospheric
value for all x so that dp/dx = 0 , which means that h is a constant. The
problem is now one dimensional and is written

d2u

dz2
= g/ν , (2)

with u = U at z = 0 , uz = 0 at z = h , (3)
p = 0 at z = h ,
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where the upward speed of the sheet is U. Integrating (2) and applying the
boundary conditions gives

u(z) = U+
g

2ν
z(z− 2h) . (4)

This gives the velocity profile, but we do not know the value of the coating
thickness h, and so this solution is not complete. Earlier researchers [2, 8, 9]
argued that the appropriate condition is the maximum flux criterion; that is,
the amount of fluid carried upward is the maximum that can be sustained.
The upward flux is

Q =

∫h
0

u(z)dz = −
g

3ν
h3 +Uh ,

and the maximum Q is found from

dQ

dh
= 0 ⇒ −

g

ν
h2 +U = 0 ⇒ h∗ =

√
Uν/g . (5)

Therefore, the thickness is determined by the upward speed U and the
kinematic viscosity ν, and so this solution provides important information
on the process. Importantly, this also gives the speed of the outside of the
coating as u(h∗) = U/2 , and the maximum flux as Qmax = 2

3
U2/3(ν/g)1/2 .

In terms of the original industry problem, the next step is to consider a
‘mainly’ vertical flow. The details of this approximation can be found in the
work of Tuck [9] and also the study group report [3], but in essence it assumes
that although the flow depends on the x location, it is locally unidirectional,
and a perturbation solution is obtained incorporating both the pressure and
shear generated by the air knife. After some work, this approximation gives
a first-order, nonlinear advection equation

ht + c(h, p
′
a, τa)hx = A(h, p

′′
a , τ

′
a) ,

where τa(x) is the shear stress from the air knife and pa is the pressure applied
by the air knife. From the theory of first-order partial differential equations
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we know that c(h, p ′a, τa) is the speed and A(h, p ′′a , τ ′a) is the amplification.
Analysis of this equation is given by Tuck [9], and it was also considered in
different ways in study groups [3, 4, 5], and in more detail by Hocking et al. [7].
In these works, possible steady state solutions were obtained, characteristics
computed and small deviations to the surface were considered. However, our
interest here is in the pure draining flow, and so we now consider draining
flows for objects with other shapes.

3 Other solutions—Axisymmetric flow
Let us consider the draining problem under the unidirectional flow assumption
in cylindrical coordinates. This is a good example for students to try (after
they have seen the two dimensional example). In cylindrical, polar coordinates,
the resulting problem is

1

r

∂

∂r

(
r
∂u

∂r

)
=
g

ν
, (6)

subject to u = U on r = R , u ′(r) = 0 on r = h .

Solving for the velocity, we find

u(r) =
gr2

4ν
+A log r+ B ,

= U+
g

4ν

(
r2 − R2

)
+
gh2

2ν
log(R/r) , (7)

but, as before, h is unknown. Here, the upward flux of the coating is

Q/2π =

∫h
R

u(r)r dr

= U
(h2 − R2)

2
+
g

4ν

[
(h4 − R4)/4− (h2 − R2)R2/2

]
+
gh2

8ν

[
(h2 − R2) + 2h2 log(R/h)

]
, (8)
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and to find the maximum we require

dQ

dh
= 2πh

[
U+

g

4ν
(h2 − R2) +

g

4ν

(
h2 − R2 − 4h2 log(h/R)

)]
= 0 ,

⇒ (h2 − R2) − 2h2 log(h/R) + 2νU/g = 0 . (9)

This transcendental equation can be solved iteratively for any parameter
values, but if we define ε = h− R , then

2Rε+ ε2 − (2R2 + 4Rε+ 2ε2) log (1+ ε/R) + 2νU/g = 0 ,

− 2ε2 + · · ·+ 2νU/g = 0 ⇒ ε ≈
√
νU/g , (10)

so that in the limit as R→ ∞ the coating thickness is the same as that for a
broad sheet.

At the outer edge of the coating, substitute (7) into (9) to obtain the surface
velocity

u(h) = U+
g

4ν

(
h2 − R2

)
−
gh2

2ν
log(h/R)

= U−U/2 ⇒ u = U/2 . (11)

This is the same relative velocity as for the broad sheet and so the question
is whether this is the case for all shapes?

4 General shapes
Consider the draining flow problem more generally [10] and recall that

∂2u

∂y2
+
∂2u

∂z2
= g/ν , (12)

subject to u = U when (y, z) ∈ SB , (13)
un = 0 when (y, z) ∈ SF , (14)
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Figure 2: General shape for draining flow with substrate surface SB and
coating surface SF.
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for flow region SB and surface SF (Figure 2), and where un is the normal
derivative at the outer surface.

This problem has a unique classical solution for any SF and SB. Therefore,
again it is insufficient to solve our problem. It turns out, as before, that there
are two extra conditions required:

Maximize Q =

∫ ∫
R

u(y, z)dydz ,

and u = UF when (y, z) ∈ SF .

Therefore we must optimize the flux upward, as before. This is a classical
calculus of variations problem [1]. In both earlier examples it was found
that the outer surface moved with velocity one half of the object speed.
Tuck et al. [10] showed that this is indeed the case for any shape, so that the
final condition that maximizes the flux Q is

u = U/2 when (y, z) ∈ SF . (15)

In principle, we can now solve for any shape. Tuck et al. [10] and Howison and
King [6] computed coatings for special cases using numerical and conformal
mappings, respectively. Here we demonstrate a simple numerical scheme to
compute draining-coat thicknesses for any shape.
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Non-dimensionalizing with respect to velocity U and length L =
√
Uν/g , the

problem becomes

∂2u

∂y2
+
∂2u

∂z2
= 1 , (16)

subject to u = 1 when (y, z) ∈ SB , (17)
un = 0 , u = 1/2 when (y, z) ∈ SF , (18)

for flow region SB and surface SF. Define a new function φ such that in
non-dimensional form

u(y, z) = 1
4
(y2 + z2) + φ(z, y) , (19)

so that the new problem is

∂2φ

∂y2
+
∂2φ

∂z2
= ∇2φ = 0 , (20)

subject to φ = 1− 1
4
(y2 + z2) , (y, z) ∈ SB ,

with ∇
[
1
4
(y2 + z2) + φ(x, y)

]
· n = 0 when (y, z) ∈ SF ,

and φ = 1
2
− 1

4
(y2 + z2) when (y, z) ∈ SF ,

where n is the outward normal to the surface SF.

The method is to use a series of fundamental singular solutions to Laplace’s
equation located outside of the flow region and compute the coefficients to
satisfy the boundary conditions. A set ofM points are placed inside the body
and N points are placed outside of the body and coating (see Figure 3). Let

φ(y, z) = 3
4
+ log(y2 + z2) +

M+N∑
k=1

γk log
[
(y− Yk)

2 + (z− Zk)
2
]
, (21)

so that ∇2φ = 0 is immediately satisfied. The γk, k = 1, 2, . . . ,M+N , are
unknown and will need to be determined to satisfy the boundary conditions.
The constant term and the first log term provide a solution that ‘almost’
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Figure 3: Computed surface shape for an ellipse of unit length with minor
axis b = 0.9 , showing the location of singular points inside the body and
outside the surface.
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satisfies the case of a circular geometry and improves the convergence of
the numerical scheme. Defining the surface of the (object) substrate to be
z = S(y) , and the surface of the coating to be z = η(y) , we discretize the
surface as zj = S(yj) , j = 1, 2, . . . ,M , and the unknown coating surface as
zj = η(yj) = ηj , j = 1, 2, . . . ,N . Substituting φ (21) into equations (12–15)
and applying at a set of points on the two surfaces providesM+2N equations
for the M+N values of γk and the N values of zj = ηj .

Figure 3 shows a distribution of the singular points for an elliptical object
with a surface coating. An ellipse is a good starting shape since, by changing
the axis ratio, you can go from a circular object to a long thin object like
a broad sheet. The resulting set of equations need to be solved for the
unknown values of the surface zj = η(yj) , j = 1, 2, . . . ,N , and strength of the
singular points γj, j = 1, 2, . . . ,N+M . The location of the singular points is
determined to ensure that the resulting system of nonlinear equations have a
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Figure 4: Surface shapes for ellipses of unit length with minor axis radii
b = 0.75, 0.5 . The upper two curves are the surfaces and the lower two are
the substrate shapes. Matching surfaces correspond in colour.
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diagonally dominant Jacobian matrix. Each singular point is chosen near one
of the surface points, but outside of the flow domain. The normal vector from
the surface point is calculated and the distance to the singular point is chosen
to be some proportion of the point spacing dy. Typically, this distance was
chosen to be dy/4, although other values were chosen to test the convergence
of the solutions.

Once the equations were set up, an initial guess was made for ηj, j =
1, 2, . . . ,N , and γj, j = 1, 2, . . . ,M+N , and a Newton’s method was used to
iterate to a solution. A guess that is a surface parallel to the substrate surface
with thickness given by (5) was found to be adequate in all cases. Solutions
were computed for ellipses with major axes of unit radius and minor axes of
radius b.

Figure 4 shows surfaces computed for ellipses of (non-dimensional) unit length,
with minor axes b = 0.5, 0.75 . Only the top half is shown. Figure 5 shows
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Figure 5: Coating thickness at the end point (z = 0) and middle points
(y = 0) on the ellipse. When b = 1 the object is a circle, so the two values
are identical.
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the coating thickness on the outer radius and at the narrowest point. As the
ellipse becomes thinner the coating all around the object also gets thinner,
and the thinning is most pronounced at the ends of the object where the
curvature is highest, that is at z = 0 , reducing to around 30% of the substrate
thickness, while the main part of the object reduces by only about 20%. The
greater reduction in thickness of the ends, so the coating is thinnest at the
points of highest curvature, is consistent with observations in the factory and
indicates why many of the flaws observed in practice occur near the edges.

5 Final remarks
Making the assumption of unidirectional flow, a set of equations is derived
to model the fundamentals of draining under gravity for an object of any
shape. In this article, a simple numerical method has been set up to compute
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the coating thickness for elliptical shaped objects. These calculations assist
in better understanding the galvanization process for objects that contain
corners or regions with non-zero curvature. Results indicate that the coating
thickness is thinnest in regions of highest curvature, and so it is likely it will
be thinnest at edges. The method described herein can be used for any shape.
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