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Stochastic modelling of Chlamydial infections
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Abstract

Chlamydia trachomatis is a bacterial pathogen that can cause se-
rious reproductive harm. We describe a class of stochastic branching
processes and their application in modelling the growth of an infec-
tion by Chlamydia. Using simulations we show that the model can
reproduce biological phenomena of interest, and we show the variability
in outcomes of infections under the same parameter conditions. We
further speculate how this model might be used to explain long-term
adverse reproductive sequelae.
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1 Introduction
Chlamydia trachomatis is a bacterial pathogen and the cause of the most com-
mon notifiable sexually transmitted infection. There is considerable evidence
to indicate that a Chlamydial infection in women may cause Pelvic Inflamma-
tory Disease (pid), and that these women are more likely to experience tubal
factor infertility [4]. The development of tubal pathology is hypothesised to
be a result of a Chlamydial infection ascending beyond the cervix and into
the upper reproductive tract, combined with a pro-inflammatory response to
the pathogen [7].

The low rate of pathology development in women with infections suggests that
a number of host response and pathogen factors moderates ascension. The
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immune system response is particularly critical in determining the development
of pathology [6].

An infection develops by extracellular Elementary Bodies (ebs) entering into
a cell. Inclusions may have many bacteria per cell. Once within the host
cell, the metabolically inert eb differentiates into the Reticulate Body (rb)
form of Chlamydia. The rbs replicate by binary fission for some cycles of
division, until some rbs convert back into ebs while others begin to replicate.
The cycle of development continues until approximately 40–48 hours post
infection, after which ebs continually exit the cell in an extrusion, which
leaves the host cell intact, or via the lytic cycle in which the host cell releases
a burst of ebs. The burst of ebs released can then go on to infect new cells,
thus beginning the cycle again [1].

The micro-population dynamics of a bacterial infection and the associated
host cell response have been represented by a system of ordinary differen-
tial equations [8]. More realistic behaviour was represented with a spatial
dimension (represented with a set of partial differential equations) [5]. Host
response scenarios can be modelled by changing parameter values of particular
equations, which in turn yields insights into the long-term behaviour of the
system under different conditions. However, this modelling approach does
not capture the randomness of the initial phase of an infection.

As a precursor to explaining pid and infertility, we must describe the require-
ments for an infection to become established and to survive in the mucosal
layer of the cervix for a sufficient period of time until ascension can occur
and pathology can develop. In the model we describe here, we explicitly keep
track of the count of infected cells and account for the stochastic elements
present in the development of an infection.

2 Branching process
Let Nt be the number of infected host cells at time t > 0 , with initial
conditions Nt = N0 . At time t, for the ith infected cell, with i = 1, . . . ,Nt ,
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let Yit be a t-measurable random variable that represents the number of infected
progeny a particular cell generates. We assume that Yit is independent and
identically distributed according to some distribution f that is not a function
of time, nor of the current state of the process Nt. We then model the number
of infected cells from previous incidences as

Nt =

Nt−1∑
i=1

Yit .

This defines the basic single-type branching process [2].

The progeny distribution f has mean and variance µ and σ2, respectively.
These two moments characterise the main properties of the process. The
trajectories of the process either die out or explode, such that

Pr({ lim
t→∞Nt = ∞} ∪ { lim

t→∞Nt = 0}) = 1 .

The mean number of progeny µ acts as the bifurcation parameter of the
process, in that µ 6 1 implies the almost sure extinction of the process.
As a point of interest, the deterministic model Nt = µNt−1 has the same
bifurcation parameter. However, in the deterministic model the population
persists to Nt = N0 . The stochastic model with µ = 1 goes extinct almost
surely.

In the supercritical case µ > 1 , the probability of the extinction of the
process is given as the fixed point q = f(q) , where f(z) := E(zYit) . That
is, the probability generating function of the infectious progeny distribution
gives an expression for the probability of extinction of an infection.

For the critical and sub-critical cases, define T to be the extinction time
of the process. Then NT =

∑T
k=0Nk follows a power series distribution

when Yit follows a power series distribution. That is, Pr(Yit = k) = αkλk. In
particular, if the progeny random variable follows a Poisson distribution with
parameter λ, then the total infectious load follows a Borel–Tanner distribution
with parameters λ and N0 [3].
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3 Modelling infectious outcomes
The branching process model tracks the randomness in the size of each burst,
along with the chances that these bacteria go on to infect another cell. The
primary entities in this setup are the number of infected host cells. Changes
in the amount of extracellular infectious material are represented in the model
to support a mechanistic interpretation of the results.

The model is generated with events occurring in time according to a Poisson
process with parameter λ = 0.25 . When a lysis or extrusion event occurs, a
random draw is made from a Binomial distribution with parameters n = 200 ,
p = 0.004 , to represent the burst size and chance of each bacteria infecting
a new cell, respectively. The random draw quantity is then added to the
total number of infected cells, with one subtracted to represent the original
cell’s demise, so that there is a significant chance of no infectious progeny
being produced and the population total decreasing in size. The value of
parameters in these simulations were chosen for illustrative purposes, but are
mostly consistent with other models in the literature [8, 5].

3.1 Given an initial infectious load, what are the
chances the infection will develop?

In Figure 1 we observe the qualitative difference between realisations of a
branching process under the same parameter conditions. Simulation four
dies out almost immediately, whereas simulation three has a similar infected
cell counts to the initial starting population. It is interesting to note that
while the survival times in simulations one and two are approximately similar,
the total cell count over time is significantly greater in two than in one.
This represents a scenario in which the infectious burden is greater for one
realisation compared to another, conditional on survival until a particular
time.
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Figure 1: Simulation of a branching process with event times according to a
Poisson process and Binomially distributed offspring distribution.
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3.2 Given an initial infectious load, what are the
chances the infection will last until a given
stopping time?

In Figure 2 we simulate the branching process under the same conditions
as in Figure 1. We expect that the proportion of zeroes is a function of the
stopping time since the zero is an absorbing state of the process. At time 72
less than a tenth of processes have a cell count of zero, whereas a majority
have a cell count of zero at time 240. Alternatively, the closer the stopping
time to the initial time, the more processes we expect to observe with a
positive population count. Figure 2 shows the change in the distribution of
cell counts for varying stopping times.

We count the number of cells at a stopping time t = 240 as this represents
sufficient time for an infection to clear in most cases. The simulation is
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Figure 2: A comparison of cell count distributions for stopping times of (A) 24,
(B) 72, (C) 168 and (D) 240 hours.
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repeated 1000 times, to give an empirical density of the population count at
a stopping time. The histogram in Figure 2(D) shows the normalised density.
This histogram shows that the distribution of cell counts is dominated by
zeroes. In this simulation approximately two-thirds of the simulations had
gone extinct by the stopping time.

The other implication of this example is that the distribution of positive cell
counts have a long right-tail. Although we expect a significant proportion
of processes to have a cell count of zero by a defined stopping time, there is
still some significant probability of observing a large population count at the
same stopping time. These unlikely but possible events may explain in part
why some infections cause no observable harm, whilst others persist.
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3.3 Given an initial infectious load, what are the
chances the infection will be above a certain
threshold at a given stopping time?

Whilst the previous question is concerned with the quantity Pr(NT | t = T) ,
this question asks Pr(NT > N

∗ | t = T) for any arbitrary threshold N∗ > 0 .
We would like to know not only if an infection will be present at a certain
point in time, but if it will be present in large enough quantities to cause
inflammatory damage. This is crudely addressed with each of the subfigures in
Figure 2. For a particular stopping time, the proportion of cell counts above a
particular threshold corresponds to a region under the empirical distribution.
The figures shows that the smaller stopping times are seen to correspond to a
greater region of probability density compared to larger stopping times.

3.4 Given an initial infectious load and
subcritical/critical reproduction, when will
extinction occur?

We are interested in the time to extinction of a branching process with critical
or subcritical reproduction, as this is a factor for total infectious load. A longer
time to extinction will imply a greater infectious load. It is a straightforward
consequence of the results above that most processes will go extinct in a
short amount of time. We observe the existence of a long right-tail in the
distribution of extinction times in Figure 3.

3.5 Given an initial infectious load and
subcritical/critical reproduction, what will the
total infectious load be?

The total infectious load is defined as the total cell population count multiplied
by the length of each cell’s lifetime. It is the metric that gives the best sense of
how severe a particular infection may be, as inflammation due to the immune
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Figure 3: Histogram of time to extinction.
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response is a function of total infectious load. Figure 4(A) shows the total
infectious load, which is a similar density type to that of the extinction time,
with a majority of processes causing a small amount of total load and a long
right-tail.

Figure 4(B) also shows the relationship between the time to extinction and
total infectious load. The two are linearly related, since total infectious load
is defined as a the product of extinction times and population count. It is
interesting to note that there is a large degree of variability around this mean
relationship. There exist some cases where the stopping time of the process is
short, but the total infectious load is quite high. Conversely, there are some
processes where the extinction time is long but the total infectious load is
quite low.

In all of the above examples, it appears that a majority of processes will
result in a small impact for the given measure of interest (stopping cell count,
extinction time, total infectious load). However, for a number of processes this
will not be the case, and the impact (for the given measure of interest) will be
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Figure 4: (A) Histogram of total infectious load; and (B) The relationship
between the time to extinction and total infectious load, where the plotted
line is least squares best fit.

0.0

0.1

0.2

0 1000 2000 3000

Total Infectious Load

P
ro

p
o
rt

io
n
 o

f 
s
im

u
la

ti
o
n
s

A

0

1000

2000

3000

4000

0 500 1000 1500

Time to Extinction

T
o
ta

l 
In

fe
c
ti
o
u
s
 L

o
a
d

B

large. When considering the chances of a particular infection to progress to
further disease, we recognise that most infections do not progress to disease
at all, but those that do may have a large impact.

4 Modelling the immune system
We map different responses of the immune system onto parameters of the
model. For example, a larger adaptive immune system response may reduce
the tail of the progeny distribution. This allows us to use our model to
determine how the immune system plays a role in modifying particular
outcomes, such as the stopping time of a sub-critical infection or the total
infectious load. We describe three specific immune system responses and the
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Figure 5: Density of total infectious load for three different immune system
responses, where the red densities represents a high immune response, green a
medium response and blue representing no immune response. (A) Macrophage
Engulfment; (B) Clearance prior to lysis; (C) Reduction in burst size.
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outcomes of the model they produce.

4.1 Macrophage engulfment

Macrophages are components of the innate immune system that migrate
within tissue and detect the presence of pathogens. Chlamydia are cleared
by macrophage engulfment prior to host cell infection [9]. We model this
immune system response by varying the success probability of an extra-cellular
bacteria infecting a new host cell. Figure 5 plots the total infectious load (as
defined above) for three scenarios, where p = 0.04 representing no immune
response of this type and p = 0.03 , p = 0.02 representing medium and high
responses of this type, respectively.
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4.2 Cell-mediated immune response

The T helper cells, particularly TH1 cells (also known as CD4+ cells) are
components of the adaptive immune system that are capable of detecting
damaged cells of the host, which increases the host’s ability to clear an
infection by removing an infected cell prior to lysis or extrusion occurring [10].
This is equivalent to the burst size of the infected cell being equal to zero. We
introduce an extra parameter p0 to our model that represents the probability
a cell will be cleared prior to lysis or extrusion. To model medium and high
immune responses, we simulate the total infectious load for p0 = 0.1, 0.5 .

4.3 Burst size

The burst size may also be impacted by a varying immune response [8]. We
model this by first assuming that the burst size of an infected cell is drawn
from a Poisson distribution with parameter λ = 200 , as opposed to a fixed
burst size as above. To represent a medium and high immune response of
this type, we then modify the mean of the burst distribution to λ = 150, 100 ,
respectively.

Figure 5 shows a comparison between no response, medium and high responses
of each of the three types described above. This exercise constitutes a
sensitivity analysis of the model; however, it does give some sense of the
impact of the response by each component of the immune system. It should
be noted that each response is considered independently of the others and
assumed constant over time, which is a biological oversimplification.

The comparison above demonstrates that for this model, an effective immune
response that neutralises free extra-cellular particles has the greatest impact
on the distribution of total infectious load, as the behaviour of the model is
most sensitive to changes in the success probability parameter.
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5 Concluding remarks
In this article we consider a class of stochastic processes for modelling chlamy-
dial infections, and show that realisations of a branching process that has
a mechanistic definition reproduce biological phenomena. We demonstrate
how this class of models permit large variability in outcomes. The model is a
significant first step in work to best elucidate the mechanism by which an
infection will result in severe reproductive sequelae.

Acknowledgements
We acknowledge the ongoing support of Wilhelmina Huston and the Chlamydia
research group at UTS, and James Brown for assistance with the first author’s
thesis. We also thank Alex Badran of Spriggy Labs for his feedback on the
manuscript. This research is supported by an Australian Government Research
Training Program (RTP) Scholarship.

References
[1] Y. M. AbdelRahman and R. J. Belland. “The chlamydial

developmental cycle”. In: FEMS Microbio. Rev. 29.5 (Nov. 2005),
pp. 949–959. doi: 10.1016/j.femsre.2005.03.002 (cit. on p. C91).

[2] T. E. Harris. “Branching processes”. In: Ann. Math. Stat. 19.4 (Dec.
1948), pp. 474–494. doi: 10.1214/aoms/1177730146 (cit. on p. C92).

[3] C. Jacob. “Branching processes: Their role in epidemiology”. In: Int. J.
Env. Res. Public Health 7.3 (2019), pp. 1186–1204. doi:
10.3390/ijerph7031204 (cit. on p. C92).

https://doi.org/10.1016/j.femsre.2005.03.002
https://doi.org/10.1214/aoms/1177730146
https://doi.org/10.3390/ijerph7031204


References C102

[4] N. Low, M. Egger, J. A. C. Sterne, R. M. Harbord, F. Ibrahim,
B. Lindblom, and B. Herrmann. “Incidence of severe reproductive tract
complications associated with diagnosed genital chlamydial infection:
The Uppsala Women’s cohort study”. In: Sexually Trans. Infect. 82.3
(2006), pp. 212–218. doi: 10.1136/sti.2005.017186 (cit. on p. C90).

[5] D. Mallet, M. Bagher-Oskouei, A. Farr, D. Simpson, and K. Sutton. “A
mathematical model of Chlamydial infection incorporating movement
of Chlamydial particles”. In: Bull. Math. Bio. 75 (Oct. 2013),
pp. 2257–2270. doi: 10.1007/s11538-013-9891-9 (cit. on pp. C91,
C93).

[6] H. K. Maxion, W. Liu, M.-H. Chang, and K. A. Kelly. “The infecting
dose of Chlamydia muridarum modulates the innate immune response
and ascending infection”. In: Infect. Immun. 72.11 (2004),
pp. 6330–6340. doi: 10.1128/IAI.72.11.6330-6340.2004 (cit. on
p. C91).

[7] S. Menon, P. Timms, J. A. Allan, K. Alexander, L. Rombauts,
P. Horner, M. Keltz, J. Hocking, and W. M. Huston. “Human and
pathogen factors associated with Chlamydia trachomatis-related
infertility in women”. In: Clinic. Microbio. Rev. 28.4 (2015),
pp. 969–985. doi: 10.1128/CMR.00035-15 (cit. on p. C90).

[8] D. P. Wilson. “Mathematical modelling of Chlamydia”. In: Proc. of
11th Computational Techniques and Applications Conference
CTAC-2003, ANZIAM J. Ed. by J. Crawford and A. J. Roberts.
Vol. 45. 2004, pp. C201–C214. doi: 10.21914/anziamj.v45i0.883
(cit. on pp. C91, C93, C100).

[9] D. P. Wilson and D. L. S. McElwain. “A model of neutralization of
Chlamydia trachomatis based on antibody and host cell aggregation on
the elementary body surface”. In: J. Theor. Bio. 226.3 (2004),
pp. 321–330. doi: 10.1016/j.jtbi.2003.09.010 (cit. on p. C99).

https://doi.org/10.1136/sti.2005.017186
https://doi.org/10.1007/s11538-013-9891-9
https://doi.org/10.1128/IAI.72.11.6330-6340.2004
https://doi.org/10.1128/CMR.00035-15
https://doi.org/10.21914/anziamj.v45i0.883
https://doi.org/10.1016/j.jtbi.2003.09.010


References C103

[10] D. P. Wilson, P. Timms, and D. L. S. McElwain. “A mathematical
model for the investigation of the Th1 immune response to Chlamydia
trachomatis”. In: Math. Biosci. 182.1 (2003), pp. 27–44. doi:
10.1016/S0025-5564(02)00180-3 (cit. on p. C100).

Author addresses

1. Torrington Callan, School of Mathematical and Physical Sciences,
University of Technology Sydney, Sydney, Australia
mailto:torrington.callan@student.uts.edu.au

2. Stephen Woodcock, School of Mathematical and Physical Sciences,
University of Technology Sydney, Sydney, Australia
mailto:stephen.woodcock@uts.edu.au

https://doi.org/10.1016/S0025-5564(02)00180-3
mailto:torrington.callan@student.uts.edu.au
mailto:stephen.woodcock@uts.edu.au

	Introduction
	Branching process
	Modelling infectious outcomes
	Given an initial infectious load, what are the chances the infection will develop?
	Given an initial infectious load, what are the chances the infection will last until a given stopping time?
	Given an initial infectious load, what are the chances the infection will be above a certain threshold at a given stopping time?
	Given an initial infectious load and subcritical/critical reproduction, when will extinction occur?
	Given an initial infectious load and subcritical/critical reproduction, what will the total infectious load be?

	Modelling the immune system
	Macrophage engulfment
	Cell-mediated immune response
	Burst size

	Concluding remarks

