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Abstract

A circumferential flow of a conducting fluid in an annular channel
can be created by the action of a Lorentz force arising as a result of
the interaction between an applied vertical magnetic field and a radial
electric current flowing through the electrolyte. Quite unexpectedly,
experiments revealed that a robust vortex system appears near the
outer cylindrical wall in such flows. McCloughan and Suslov (J. Fluid
Mech. 887:A23, 2020) (McCS) reported comprehensive linear stability
results of such a flow for variable Lorentz forcing. Here we complement
that study by investigating the flow structure as a function of the
channel aspect ratio. Remarkably, despite the completely different
physical nature of parametric dependences, dynamic in McCS and
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purely geometric here, we show that in both scenarios vortices appear
on a background of a steady axisymmetric flow at the boundary between
two counter-rotating toroidal structures and have a similar energy
distributions. The two studies demonstrate the robustness of the
mechanism responsible for the vortex formation: Rayleigh’s inviscid
centrifugal instability aided by radial shear in the boundary layer near
the outer cylindrical wall.
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1 Introduction and problem formulation
Rotating magnetohydrodynamic flows of liquid metals and electrolytes are
of interest across various research fields and in many industrial applications,
such as stirring. In laboratory studies of geophysical, atmospheric and
astrophysical phenomena, electromagnetic forces are often used to drive the
flow of a conducting model fluid. When such a fluid is confined between
two vertical coaxial cylindrical electrodes and placed into a vertical magnetic
field B, a Lorentz force FL = j × B , where j is electric current density,
arises and drives the fluid circumferentially. Experiments show that, quite
unexpectedly, a robust system of vortices arises near the outer cylindrical
wall [3]. McCloughan and Suslov [2] (referred to as McCS below) showed that
these vortex systems appeared when the applied current across the cavity
exceeded a certain threshold. In the current article we investigate the system
behaviour when the electrolyte depth (channel aspect ratio), rather than the
current, is varied.
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Figure 1: Sketch of the problem geometry. The circumferentially moving
electrolyte is contained in a layer of depth h between two vertical cylindrical
electrodes located at r∗ = R1 and r∗ = R2 (stars denote dimensional quantities).
A disk magnet underneath the layer generates a predominantly vertical
magnetic field with magnitude B0 at the inner corner of the channel.
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Consider a layer of incompressible viscous electrolyte of thickness h, confined
to an annular channel formed by two vertical co-axial cylindrical electrodes of
radius R1 and R2, R1 < R2 , as shown in Figure 1. The bottom of the cavity is
solid and non-conducting, while the top is a free surface. The electrolyte has
dynamic viscosity µ, density ρ and electric conductivity σe. This system is
placed above a permanent disk magnet that creates a predominantly vertical
magnetic field characterised by the amplitude B0 in the corner between the
inner electrode and the solid bottom, that is, at (r∗, z∗) = (R1, 0) .
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Under the small magnetic Reynolds number approximation [1] the magnetic
field generated by the flowing electrolyte is negligible compared to that of
the magnet. Therefore, the steady axisymmetric non-dimensional Poisson’s
equation for the electric potential φ, and the momentum and continuity
equations for an incompressible fluid written in scaled cylindrical coordinates
become [2]
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with corresponding boundary conditions

u = v = w = 0 at z = −1 and at r = α± 1 , (6)
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∂φ

∂z
= 0 at z = −1 , and

∂φ

∂z
= −ε2Ha2vBr at z = 1 , (9)



2 Steady axisymmetric basic flow solutions C218

where r = r∗

R2−R1
, z = z∗

h
are the scaled coordinates, p is the pressure including

the hydrostatic component, u = uer + veθ +wez and B = Brer + Bzez are
the velocity and magnetic fields, respectively, with subscripts indicating
components in the radial (r), circumferential (θ) and vertical (z) directions.
From Ohm’s law, the electric current density is
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The non-dimensional parameters describing the flow are the aspect ratio
of the fluid layer ε, the square of Hartmann number Ha2 characterising
electromagnetic effects and Reynolds number Re quantifying the ratio of the
Lorentz and viscous forces:
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where σe is the electrical conductivity, µ is the dynamic viscosity, ρ is the
mass density, and the velocity scale and the geometric parameter are defined,
respectively, as

U0 =
σe∆φ0B0h

2µ
ε and α =
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, (12)

where ∆φ0 is the electric potential difference applied between the electrodes.

2 Steady axisymmetric basic flow solutions
As described by Suslov, Pérez-Barrera, and Cuevas [4], the primary circumfer-
ential fluid motion results in a centrifugal force responsible for the creation of
a radial velocity component so that the overall flow becomes toroidal. Suslov,
Pérez-Barrera, and Cuevas [4] referred to such a flow as Type 1. It is illustrated
in Figure 2(a, b).
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Figure 2: The steady axisymmetric basic flow solutions for ε = ε∗ = 0.219 ,
Ha = 4.47 × 10−3 and Re = 1177 . Panels (a, b) and (c, d) show the
Type 1 and 2 solutions, respectively. The red (blue) regions in panels (a, c)
correspond to large (small) circumferential velocity v and in panels (b, d) to
positive (negative) circumferential vorticity component ωθ =

1
ε
∂u
∂z

− ε∂w
∂r

.

If the aspect ratio ε is increased while the product ∆φ0h of the applied poten-
tial difference and the thickness of the layer remains constant (as explained
by McCS this corresponds to experiments with fixed total current flowing
between the electrodes), then a second axisymmetric solution, referred to
as Type 2, appears at some aspect ratio value ε = ε∗ . This solution is
illustrated in Figure 2(c, d). The main feature that distinguishes Type 1 and
Type 2 solutions is a secondary counter-rotating toroidal structure near the
free surface and the outer wall. This toroidal structure creates a counter flow
near the free surface with a stagnation point at some distance from the outer
wall. Even though Type 2 solutions are caused by a purely geometric effect
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Figure 3: Same as Figure 2 but for ε = 0.258 , Ha = 5.28 × 10−3 and
Re = 1391 .

here, they are remarkably similar to dynamically forced flows reported by
McCS, the appearance of which was due to the variation of the Lorentz force
quantified by the Reynolds number. Both Type 1 and Type 2 solutions can
co-exist in relatively thin layers for 0.219 ≈ ε∗ < ε < ε∗∗ ≈ 0.261 but they
become topologically indistinguishable at ε = ε∗∗ , as illustrated in Figure 3,
and both cease to exist for ε > ε∗∗ .

The subsequent analysis follows similar steps to those of McCS but explores
the stability of the two steady axisymmetric solutions when the aspect ratio
of the layer is varied while the total current flowing between the electrodes
(i.e., dynamic forcing) remains fixed.



3 Linear stability analysis C221

3 Linear stability analysis
We investigate the linear stability of the steady axisymmetric basic flow
w0 = [u0, v0, w0, p0] with respect to infinitesimal disturbances that are as-
sumed to be periodic in θ. The velocity and pressure perturbations are
written in a normal mode form as w1(r, z) exp (σt+ imθ) + c. c. , where
w1 = [u1, v1, w1, p1] , c. c. denotes complex conjugate terms, and m is the
circumferential wavenumber. Perturbations satisfy the following generalised
eigenvalue problem for the complex temporal amplification rate σ = σR + iσI :
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The above eigenvalue problem is solved numerically. Figure 4(a) illustrates
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Figure 4: (a) Linear amplification rate σR for m = 0 . The lower branch
(the dashed red line) corresponds to the Type 1 solutions that exists for
0 < ε < ε∗∗ ≈ 0.261 . The upper branch (the solid blue line) corresponds to
the Type 2 solutions that exist for 0.261 ≈ ε∗∗ > ε > ε∗ ≈ 0.219 . (b) The
relationship between the aspect ratio and the Reynolds number for a fixed
electric current.
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the real amplification rate σR as a function of the aspect ratio ε for m = 0 .
For small values of ε only the Type 1 solution exists, which is linearly stable
(σR < 0). This remains so as ε increases until the layer reaches the critical
thickness corresponding to ε = ε∗ and the Type 2 solution suddenly appears.

As ε increases further, the Type 1 solution remains stable while the σR values
for the Type 2 solution become positive indicating their linear instability. At
ε = ε∗∗ the σR values for both types of solutions approach zero, the lower
and upper branches of the σR curve ‘collide’ and the toroidal structure near
the outer wall disappears (Figure 3).

Despite being generated for fixed dynamic forcing, Figure 4(a) bears remark-
able resemblance to the results reported by McCS for a variable Lorentz
force. Figure 4(b) sheds light on the reason behind such an observation. The
variation of the aspect ratio ε of the electrolyte layer when the total electric
current flowing through it remains fixed leads to a proportional variation in
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the Reynolds number Re that characterises the relative importance of the
driving Lorentz force. Yet, the two physically distinct parameters are not
equivalent in the sense that the critical values ε∗ and ε∗∗ computed here
(limiting the existence range of Type 2 flows) cannot be rescaled to their
Reynolds number counterparts Re∗ and Re∗∗ reported by McCS.

To investigate features of the instability further, in Figure 5 we present real
amplification rates σR and the corresponding angular speeds ω = −σI/m
of perturbations corresponding to systems with m = 0, 1, . . . , 9 vortices.
As seen from Figure 5(a), the σR(ε;m) are positive for Type 2 flows over
different ε intervals. This signifies that the number of vortices observed
experimentally depends on the depth of the layer. The modes with m > 9

have negative linear amplification rates and are not expected to be seen
in experiments. The perturbation amplification rates for Type 1 solutions
remain negative indicating that they are always stable. The σR(ε;m) curves
translate downward as m increases and thus modes with larger numbers of
vortices are less likely to be observed.

Plots in Figure 5(b) demonstrate that the angular wave speeds ω = −σI/m
have close but distinct values across the vortex existence region. The excep-
tions are the m = 1 and m = 2 modes. The m = 1, 2 curves intersect the
ones for larger values of m suggesting that a resonant interaction between
the m = 1, 2 modes with the other modes can occur, although this cannot be
confirmed within the framework of a linear stability analysis.

Recollect that the secondary toroidal structure in Type 2 flows induces
a radial counterflow that results in a stagnation point u0 = 0 at the free
surface. Figure 6 shows that the absolute values of the free surface disturbance
velocities (scaled by max{|u1|, |v1|}) achieve their maxima at the same radial
location in the close vicinity of the stagnation point separating the two tori.
Therefore, vortex instability arises at the boundary between the large bulk
toroidal flow structure and the smaller torus counter-rotating near the outer
wall. This demonstrates that the existence of the secondary toroidal structure
in Type 2 flow is the necessary condition for the onset of instability.
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Figure 5: (a) Linear amplification rates σR for m = 0 (◦), m = 1 (+),
m = 2 (∗), m = 3 (×), m = 4 (square), m = 5 (�), m = 6 (4), m = 7 (5),
m = 8 (hexagram) and m = 9 (pentagram). For Type 2 solutions (upper
branches), σR < 0 for m > 9 and the corresponding curves are not shown.
The lower branches corresponding to stable Type 1 solution are truncated
to reduce clutter. (b) The corresponding angular speed ω = −σI/m for
m = 1, · · · , 9 (ω ≡ 0 for m = 0).
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To obtain an insight into the mechanisms driving this instability, the balance
of mechanical energy in the system is considered:

σRΣk = Σvis + ΣHa + Σcc + Σbf , where ΣX =

∫ 1
−1

∫α+1
α−1

< (EX) r drdz , (17)

where < denotes the real part. Expressions EX for X = {k, vis,Ha, cc, bf} are
derived from (13)–(15) multiplied by the complex conjugate eigenfunctions and
represent: perturbation kinetic energy, viscous dissipation, electromagnetic
effects, curvature effects, and interactions of perturbations with the basic
flow, respectively, and are formally defined by McCS [2].

The kinetic energy term Σk is positively defined. Figure 7(a, b) compares
the spatial fields of the basic flow (Ek,0) and disturbance (Ek) kinetic energy.
The former is distributed throughout the r-z cross-section while the latter is
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Figure 6: The perturbation velocities at the free surface for ε = 0.258 ,
Ha = 5.28×10−3 and Re = 1391 for (a, b) Type 1 and (c, d) Type 2 solutions.
The vertical lines show the location of the stagnation point r ≈ 2.661 of Type 2
flow at the free surface. Symbols are defined in Figure 5.
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Figure 7: The r-z plane distributions of the basic flow kinetic energy Ek,0 =
u20 + v

2
0 + ε

2w20 and various perturbation energy integrands for the Type 2
basic flow solution with m = 2 for ε = ε∗ = 0.258 , Ha = 5.28 × 10−3 and
Re = 1391 .
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strongly localised near the free surface and the outer cylindrical wall where
the vortices are seen. The vortices are formed in the region where the basic
flow is less energetic and their occurrence reduces the kinetic energy deficit
there. The sign of terms in the right-hand side of (17) differentiate between
stabilising (negative) and destabilising (positive) influences. The viscous
dissipation Σvis is negatively defined and is stabilising for all wavenumber m.
The electromagnetic effects are characterised by consistently negative ΣHa and
are stabilising but they are several orders of magnitude weaker than any other
effects. Therefore, the Lorentz force, which drives the primary flow, makes a
negligible contribution to the development of the instabilities. The effects of
curvature and radial shear (including Rayleigh centrifugal destabilisation) Σcc

and the energy exchange between the perturbations and the basic flow via
non-radial shear Σbf are both positive and of the same order of magnitude,
and thus both contribute to the instability.

The presented energy consideration for variable depth fluid layers is in agree-
ment with McCS for variable forcing. Therefore, we conclude that in the
considered problem the variation of independent dynamic and geometric
parameters corresponding to two common experimental scenarios (variation
of the Lorentz force and of the fluid depth) lead to a similar morphology
of the experimentally observed flows. Furthermore, the current analysis
demonstrates the robustness of the physical instability mechanism identified
by McCS that remains unchanged in the two distinct physical scenarios: the
observed vortices arise due to Rayleigh’s inviscid centrifugal instability aided
by radial shear in the boundary layer near the outer cylindrical wall, while
the electromagnetic effects remain negligible.
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