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Simulation of bimolecular reactions:
numerical challenges with the graph Laplacian
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Abstract

An important framework for modelling and simulation of chemical
reactions is a Markov process sometimes known as a master equation.
Explicit solutions of master equations are rare; in general the explicit
solution of the governing master equation for a bimolecular reaction
remains an open question. We show that a solution is possible in
special cases. One method of solution is diagonalization. The crucial
class of matrices that describe this family of models are non-symmetric
graph Laplacians. We illustrate how standard numerical algorithms for
finding eigenvalues fail for the non-symmetric graph Laplacians that
arise in master equations for models of chemical kinetics. We propose
a novel way to explore the pseudospectra of the non-symmetric graph
Laplacians that arise in this class of applications, and illustrate our
proposal by Monte Carlo. Finally, we apply the Magnus expansion,
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which provides a method of simulation when rates change in time. Again
the graph Laplacian structure presents some unique issues: standard
numerical methods of more than second-order fail to preserve positivity.
We therefore propose a method that achieves fourth-order accuracy,
and maintain positivity.

Contents
1 Introduction C60

2 Exact solutions, spectra and pseudospectra C62

3 Application of the Magnus expansion C67

4 Conclusions C70

1 Introduction
This article is motivated by the experiments in a Harvard chemistry lab with
a so-called Dimple Machine, described in “Mass action at the single-molecule
level,” by Shon and Cohen [12], and on the website http://cohenweb.rc.
fas.harvard.edu/Research/TrapSingMol/DimpleMachine.htm. Sections
1.2 and 1.6 of Shon’s [11] associated PhD thesis describe the way that Markov
processes provide a mathematical framework for models of these chemical
reactions, and we use the same mathematical models here. Briefly, we study
what is sometimes termed a master equation

d

dt
p = Ap with solution p(t) = exp(At)p(0) . (1)

Here the ith component of the vector p ∈ Rn records the probability of being
in state i. A state is defined by the integer number of molecules of each
type of chemical species. The matrix A = [aij] must be an example of a

http://cohenweb.rc.fas.harvard.edu/Research/TrapSingMol/DimpleMachine.htm
http://cohenweb.rc.fas.harvard.edu/Research/TrapSingMol/DimpleMachine.htm
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(typically non-symmetric) graph Laplacian, which is defined by the properties
that off-diagonal entries are zero or positive, and each column sums to zero:

• aij > 0 for i 6= j ; and

• ajj = −
∑

i 6=j aij .

Shon and Cohen [12, Figure 4] compared the mathematical model (1) with
experiments—these chemical reactions are described extremely well by this
theory!

In very special cases a governing master equation has an exact solution, in
which case the matrix exponential appearing in (1) can be made more explicit.
For example, for a model of monomolecular reactions, exact solutions and
eigenvalues of an associated matrix were found by Iserles and MacNamara [5].
This monomolecular model is an example of a class of master equations in
which a family of binomial distributions form a one-dimensional invariant
manifold, and it has important applications in ion channel kinetics [3].

For the rest of this article we concentrate on the bimolecular reaction

S1 + S2 � S3 .

We assume the initial state is (m1,m2, 0) molecules of each of the three
species, S1, S2, S3, with m2 > m1 . With n = m1 + 1 , this reaction is
modelled by the n× n tridiagonal matrix

Ai,j =


c2(j− 1) , i = j− 1 ,

−c2(j− 1) − c1(m1 − j+ 1)(m2 − j+ 1) , i = j ,

c1(m1 − j+ 1)(m2 − j+ 1) , i = j+ 1 .

(2)

Here c1, c2 denote positive rate constants for the forward and backward
directions, respectively, and are denoted kon and koff with appropriate units
in Table 1 of Shon and Cohen [12]. The exact scalings of the rate constants
depend on things such as the volume of the reacting vessel, which will not be
considered here, and which do not effect the results we describe, which are
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generally applicable to this class of models. For simplicity, we give examples
for the special casem1 = m2 = m , although our methods work more generally.
This special case models the experiments in Figure 4(f) of Shon and Cohen [12]
which consider m = 1, 2, 3 (in their notation, (NR, NG) = (1, 1), (2, 2), (3, 3)
with the number of red monomers NR = m1 and green monomers NG = m2).

2 Exact solutions, spectra and pseudospectra
We examine the spectra and pseudospectra of the matrix A in (2). Then we
outline a procedure for exact diagonalization, which leads to more explicit
solutions via exp(At) = Vdiag(eλ0 , . . . , eλm)V−1 (albeit the algebraic expres-
sions for V−1 could quickly become unwieldy). It is helpful to know that,
surprisingly, the non-symmetric matrix does not have complex eigenvalues.

Lemma 1. The eigenvalues of the non-symmetric matrix (2) representing
the bimolecular reaction and the Dimple Machine are purely real.

Here we use the same method of proof described by Trefethen and Embree [14,
Sec. 12], specialised to this particular application of the Dimple Machine.

Proof: Let d1 = 1 . Recursively define

di+1 =

(
c2(j− 1)

c1(m1 − j+ 1)(m2 − j+ 1)

)1/2
di.

Define the diagonal matrix D with diagonal dii = di . Direct matrix mul-
tiplication confirms that DAD−1 is a symmetric matrix, so by the Spectral
Theorem, eigenvalues are real. Hence the eigenvalues of A are also real,
because A is similar to DAD−1 . ♠

Remark 2. A numerical calculation of eigenvalues of matrix (2), say for
m > 100 , almost always produces complex numbers (in all numerical software,
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including matlab), with imaginary components of significant magnitude. See
Figure 1. Lemma 1 shows such numerical calculations are wrong. This numer-
ical issue is related to Twisted Toeplitz matrices and the pseudospectra [14].
Pseudospectra and other computational issues for this class of problems are
discussed by MacNamara [6], MacNamara, Burrage, and Sidje [9], MacNa-
mara, McLean, and Burrage [10], and MacNamara et al. [7], and references
therein.

Figure 1 also shows numerical estimates of eigenvalues for a perturbed version
of the matrix (2). These perturbed points are a very crude estimate of the
pseudospectra of the matrix, visualised as a dot cloud. However, there is an
important difference between what is computed in Figure 1 and the standard
definition of the pseudospectra in the literature. For ε > 0 , one equivalent
definition of the ε-pseudospectra of A is the set (in the complex plane) of
eigenvalues of some perturbed matrix A+ E :

{λ ∈ C : (A+ E)v = λv , E ∈ Cn×n , ‖E‖ < ε} .

The formal notion of the pseudospectra has a drawback for applications
that involve graph Laplacian (such as the applications to chemical kinetics
via master equations and Markov processes that we describe) because it
corresponds to perturbing entries in the matrix A in a way that does not have
a physical interpretation in the probabilistic model. In particular, the above
perturbation permits:

• negative off-diagonal entries;

• columns with non-zero sum; and

• off-diagonal entries, that were originally zero, becoming non-zero.

The first two points violate the graph Laplacian structure, and the third
point is not allowed according the chemical reactions being modelled by the
matrix. For example, changing entries beyond the tridiagonal structure would
correspond to changes in state that are impossible for a bimolecular chemical
reaction.
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Figure 1: Numerical estimates of the eigenvalues of a 100 × 100 instance
of the matrix (2) with c1 = c2 = 1,m = 99 , computed with the numerical
software matlab, plotted (red ‘×’) in the complex plane. Near the negative
real axis and near 0, there is a dense set of estimates indicated by many
markers ‘×’ being very close together. Numerical estimates for 200 randomly
perturbed versions of the matrix in (2) are also plotted (blue ‘·’). According
to Lemma 1, exact eigenvalues are real. So complex eigenvalues here are
wrong: numerical methods fail on this class of graph Laplacians.
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To explore the pseudospectra in a way that avoids the three violations of the
underlying model, here we propose to perturb only a subset of the entries of
the matrix (2), and in a way that respects the graph Laplacian structure and
chemical structure. This perturbation is done by adding the absolute value
of independent and identically distributed samples from the standard normal
distribution to each positive entry of (2), and then adjusting the negative
main diagonal entries to preserve the graph Laplacian property. Figure 1
illustrates an example of our proposal, but visually, this appears very similar
to what one might obtain by the usual pseudospectra. A plausible explanation
of that similarity is that the figure is still computed by standard eigenvalue
algorithms, which can only return estimates that approximately correspond to
the usual pseudospectra of the input matrix to the algorithm (and although
the class of input matrices are structurally different to what is usually input,
they are intuitively still ‘close’). Random matrix theory has been applied to
non-symmetric graph Laplacians by Timm [13], and specifically to Twisted
Toeplitz matrices by Basak, Paquette, and Zeitouni [1].

Remark 3. Finding eigenvalues of a 4×4 version of the matrix (2) (correspond-
ing to m = 3 and the case labelled (3, 3) in the experiments of Figure 4(f) of
Shon and Cohen [12]), with symbolic software in Wolfram Alpha1 produces a
complicated expression, involving imaginary units:

−
1± i

√
3

63
√
2

[
4(−3c22 + 6c1c2 − 49c

2
1)
3 + · · ·

]1/2
+ · · · .

Presumably this is an artefact of the Wolfram Alpha software using Cardano’s
formula for an associated cubic. If not aware of Lemma 1, then a naive user
of symbolic algebra software might easily be misled.

From standard theory of Markov processes it is known that matrices such
as (2) have a unique zero eigenvalue, and that all other eigenvalues have
negative real part. Together with Lemma 1, we see that all nonzero eigenvalues
are negative.

1https://www.wolframalpha.com/, accessed 20/02/2020

https://www.wolframalpha.com
https://www.wolframalpha.com/
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After factoring out the zero eigenvalue, the characteristic polynomial is
reduced in degree by one. Hence we find the eigenvalues of the 3 × 3 case
with the quadratic formula, and the 4× 4 case with Cardano’s formula for
the cubic. (And the 5× 5 case via formulae for a quartic, but not 6× 6 or
larger cases, which lead to polynomials of higher degree.) Thus we now have
a procedure that finds exact eigenvalues for the cases in all of the experiments
in Figure 4(f) of Shon and Cohen [12].

Having found an eigenvalue, the corresponding right eigenvector can always
be found by solving Av = λv in a recursive way, analogous to the method of
forward substitution used in Gaussian elimination, to take advantage of the
tridiagonal structure. In particular, set v1 = 1 , then set v2 = v1(λ−a11)/a12 ,
and then recursively

vi+1 = [−ai,i−1vi−1 + (λ− aii)vi]/ai,i+1 .

Thus we have a procedure to exactly diagonalise the examples in all of the
experiments in Figure 4(f) of Shon and Cohen [12], mentioned above.

The stationary distribution (the right eigenvector for λ = 0) can always be
found in the way described above, and this distribution is well known for
this class of bimolecular models [11, Sec. 1.2, 1.6]. Even more generally than
the class of models we study in this article, according to the Matrix-Tree
Theorem [4], for all matrices of the graph Laplacian type there are known
formulae for the vector in the null space.

An illustrative example for the m = 1 case with λ0 = 0 , λ1 = −(c1 + c2) has
an exact diagonalization(

−c1 c2
c1 −c2

)
=

1√
|λ1|

(
c2 1

c1 −1

)(
λ0 0

0 λ1

)(
1 1

c1 −c2

)
1√
|λ1|

.

In another example, for the m = 2 case, let λ0, λ+ and λ− denote the three
eigenvalues, and let v0, v+ and v− denote the corresponding eigenvectors.
Exact eigenvalues and eigenvectors are

λ0 = 0 and v0 =
(
1, 4c1/c2, 2c

2
1/c

2
2

)
,
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and

λ± =
1

2

(
−5c1 − 3c2 ±

√
(c1 − c2)2 + 8c21

)
,

v± = (1, (4c1 + λ±)/c2, c1(4c1 + λ±)/[c2(2c2 + λ±)]) .

The autocorrelation function in equation (5) of Shon and Cohen [12] is
used to estimate the rate constants from experimental observations. That
autocorrelation involves the matrix exponential of (1), and in the 2 × 2
case this is available as an algebraic expression, as noted above, but for
larger matrices this matrix exponential is numerically estimated by Shon
and Cohen [12]. The procedure for exact diagonalizations we describe above,
for say the 3 × 3 case, allows expressions for the matrix exponential to be
found without resorting to numerical calculation—allowing the dependence
on parameters to be made explicit.

3 Application of the Magnus expansion
We now consider the case that the rate ‘constants’ c1 = c1(t) and c2 = c2(t)
in (2) are in fact time dependent, to model experiments in which these rates
vary. Then the matrix varies in time, A = A(t) . Instead of (1), we now have

d

dt
p = A(t)p with solution p(t) = exp(Ω(t))p(0) . (3)

Here, Ω(t) is given by the Magnus expansion [2, 5]:

Ω(t) =

∫ t
0

A(s)ds−
1

2

∫ t
0

[∫ s
0

A(r)dr,A(s)
]
ds+ · · · . (4)

Here the commutator [X, Y] of two matrices X and Y is defined to be [X, Y] =
XY − YX . All higher order terms (not shown in (4)) involve commutators.
For example, the next two terms of (4) are

+
1

12

∫ t
0

[∫ s1
0

A(s2)ds2,
[∫ s1
0

A(s2)ds2,A(s1)
]]
ds1
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and

+
1

4

∫ t
0

[∫ s1
0

[∫ s2
0

A(s3)ds3,A(s2)
]
ds2,A(s1)

]
ds1 .

For a practical numerical method, only a few terms of the infinite Magnus se-
ries (4) can be retained [2, 5]. For example, a second-order method is obtained
by keeping only the first term of the series in (4), and by approximating the
integral by the midpoint rule via

∫h
0
A(t+ s)ds ≈ hA(t+ h/2) . Thus with

σ = hA(t+ h/2) ,

we take a small time step h > 0 in the second-order numerical scheme via

p̂(t+ h) = exp(σ)p̂(t) . (5)

An attractive property of the second-order method in (5) is that it does
not require matrix commutators [2, 5], and that it respects the nonnegative
property of solutions because σ = hA(t + h/2) is a graph Laplacian. A
fourth-order method is obtained by including just one commutator [2, 5]:
with σ = 1

2
h(A1 +A2) +

√
3
12
h2[A2, A1] , where A1 = A

(
t+ (1/2−

√
3/6)h

)
and A2 = A

(
t+ (1/2+

√
3/6)h

)
are evaluated at Gauss quadrature points,

we take a time step h in the fourth-order numerical scheme via

p̂(t+ h) = exp(σ)p̂(t) . (6)

For our chemical application, the commutators can be substantially simplified.
We have A(t) = c1(t)M+ c2(t)N where M and N are both bidiagonal and
constant matrices. Hence

[A(t1),A(t2)] = [c1(t1)c2(t2) − c1(t2)c2(t1)][M,N] . (7)

The point is that the commutator [A(t1),A(t2)] required by the Magnus
expansion and numerical scheme, involves constant matrices. Thus [M,N] are
precomputed once. All other computations only involve scalar functions c1(t),
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c2(t), which represents a considerable numerical savings. MacNamara and
Burrage [8] present an example of this application.

The advantage of including the commutator is the significant increase in
the order of accuracy. For our particular class of problems, a disadvantage
is that usually, a commutator of two graph Laplacian matrices is not a
graph Laplacian. Notice that in (7), up to the scalar factor [c1(t1)c2(t2) −
c1(t2)c2(t1)] , the commutator [A(t1),A(t2)] is proportional to ±[M,N] . For
example, in the 3× 3 case (m = 2) we have

[M,N] =

−4 −3 0

4 2 −2
0 1 2

 .
This evidently does not exhibit the pattern of signs of a graph Laplacian!
Hence [A(t1),A(t2)] in (7) is not a graph Laplacian. This matters because
graph Laplacian matrices L have the special property that all entries of
the matrix exponential exp(L) are nonnegative and columns are probability
vectors, which is important to the probabilistic interpretation of the model.
Unfortunately, the commutator does not have the same pattern of signs as
the matrix A, and the commutator is not a graph Laplacian, so although (6)
is fourth-order, the numerical method (6) could produce negative numbers
(while the true solution is positive).

Fourth-order commutator-free quasi-Magnus integrator To avoid
commutators that are not graph Laplacian matrices appearing in the exponent
of the Magnus integrators, we now consider commutator-free quasi-Magnus
integrators. For example, consider the averaged matrices

σ1 =
1

2
h(αA1 + βA2) , σ2 =

1

2
h(βA1 + αA2) ,

with

A1 = A(t+ (1/2−
√
3/6)h) , A2 = A(t+ (1/2+

√
3/6)h)
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and

α =
1

2
+

√
3

3
, β =

1

2
−

√
3

3
,

for a small time step h > 0 . Note that α + β = 1 , β < 0 and α/|β| =
7 + 4

√
3 ' 14 . The point is that β is negative, but much smaller than α.

Then, unless A(t) changes with t suddenly, this scheme has the attractive
property that σ1 and σ2 will remain graph Laplacian matrices. To give a
sense that most practical examples will not change too suddenly, we now give
an example of how to be certain that σ1 and σ2 will indeed remain graph
Laplacian matrices.

A fourth-order integrator in the time step h is given by the numerical scheme
[2, and references therein]

p̂(t+ h) = exp(σ2) exp(σ1)p̂(t) . (8)

Each exponential is interpreted as a scheme to advance a half step with
an averaged method followed by the averaged adjoint method, such that
the result is accurate up to order four. To illustrate the application of our
recommended numerical method (8) with our running example, let us suppose
that c1 = c1(t) and c2 is constant. The only constraint for σ1, σ2 to be graph
Laplacian matrices is that

max
{
c1(t1)

c1(t2)
,
c1(t2)

c1(t1)

}
< 7+ 4

√
3 ' 14 . (9)

If c1(t) is a smooth function, then this is a condition that should be satisfied
for all time steps of practical interest. Moreover, this condition is always
guaranteed with simple adaptive time stepping.

4 Conclusions
We have applied techniques for graph Laplacians to a particular application
that is motivated by single molecule technology and experiments with the
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Dimple Machine [12]. We have given reasons why the usual way of studying
the pseudospectra has a drawback for graph Laplacians, and therefore we
have proposed a different way to interrogate (an approximation to) the
pseudospectra, which we illustrate with the Monte Carlo dot cloud of Figure 1.

We explained that exact diagonalizations are possible via the procedure we
exemplified for some of the experiments, which can give exact solutions.
However, the exact solution to the bimolecular master equation with m = 5
or more molecules of each species S1, S2, and assocciated eigenvalues of (2)
remains an important open question.

Finally, we suggest how the Magnus expansion can be applied to simulations
of bimolecular reactions when rates vary in time. The recurring theme of the
article is the graph Laplacian structure, and again this issue manifests itself
in the commutators arising in the infinite expansion (4). Standard numerical
methods are not able to respect key properties of the solution, such as non-
negativity. We address this issue by showing how a fourth-order method can
be achieved while simultaneously maintaining positivity. Preserving graph
Laplacian structures and associated properties in numerical schemes is a much
wider issue than only the application we focused on here, and an important
future challenge.
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