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Optimal parameter for the stabilised five-field
extended Hu–Washizu formulation
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Abstract

We present a mixed finite element method for the elasticity problem.
We expand the standard Hu–Washizu formulation to include a pressure
unknown and its Lagrange multiplier. By doing so, we derive a five-field
formulation. We apply a biorthogonal system that leads to an efficient
numerical formulation. We address the coercivity problem by adding
a stabilisation term with a parameter. We also present an analysis of
the optimal choices of parameter approximation.
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1 Introduction
The Hu–Washizu principle was originally formulated for linear elasticity theory.
In our previous work [4, 6, 5], we applied the Hu–Washizu formulation to
the Poisson problem. In this article, we consider our stabilised formulation
for the linear elasticity problem. The linear elasticity problem is stated as
follows. Let Ω ⊆ Rd , d ∈ {2, 3} be open and bounded domains. Given a
prescribed body force F ∈ [L2(Ω)]d , the equilibrium equation is

−∇ · σ = f in Ω, (1)

where σ is the symmetric Cauchy stress tensor. The strain d is related to
the displacement u through the relation

d = ε (u) =
1

2

[
∇u+ (∇u)T

]
. (2)

Here f : Ω → Rd and u : Ω → Rd . The tensors σ and d are symmetric
tensor functions of size d× d defined on Ω. We assume that u = 0 on ∂Ω.
The constitutive relation which relates the stress and strain is given by

σ = Cd = λ (trd) 1+ 2µd , (3)
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where C denotes the fourth-order elasticity tensor, 1 is the identity tensor,
and λ and µ are the Lamé parameters. A nearly incompressible elasticity
problem arises when λ is very large. In this article, our focus is not on the
nearly incompressible material. We mainly focus on the choice of an optimal
parameter in our parameterised formulation.

There are several ways to derive a mixed formulation for elasticity prob-
lems. Two possible methods are the Hu–Washizu formulation [2] and the
displacement-pressure formulation [9]. The displacement, strain and stress
are the unknowns in the Hu–Washizu formulation. While the displacement
and strain take the role of two primal unknowns, stress takes the role of
the Lagrange multiplier [2]. Biorthogonal systems were applied to the Hu–
Washizu formulation by Lamichhane, McBride and Reddy [9]. They also
introduced a parameterised stabilisation term to ensure that the conditions
of well-posedness are satisfied. However, in this article, we construct a pa-
rameterised stabilisation that is different from that of Lamichhane, McBride
and Reddy [9]. For the displacement-pressure formulation, Lamichhane and
Stephan [10] proposed the pressure as the Lagrange multiplier and obtained
a symmetric formulation for a biorthogonal system.

Djoko and Reddy [3] gave an extended four-field version of the Hu–Washizu
formulation. The four-field formulation is obtained by adding the pressure
variable as an extra unknown and introducing a stabilisation term to en-
sure that the conditions of well-posedness are satisfied. Recently, Zdunek,
Rachowicz and Eriksson [12] developed a five-field Hu–Washizu for nearly
inextensible and almost incompressible hyperelasticity. They implemented
the formulation in an hp-adaptive setting and also included error estimation
for an adaptive method.

In this article, we combine the Hu–Washizu and displacement-pressure formu-
lations. In Section 2 we briefly describe the original Hu–Washizu formulation
and our extended formulation. In our approach, stress takes the role of La-
grange multiplier in the displacement-strain equation and pressure takes the
role of Lagrange multiplier in the displacement-pressure equation. By doing
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so, we arrive at the five-field formulation for elasticity. In Section 3, to prove
the well-posedness condition, we adopt the stabilisation term that was used
in our mixed formulation for the Poisson problem [4, 6, 5]. In Section 4 we
introduce the finite element discretisation and algebraic formulation. Similarly
to our previous work on the Poisson problem [6], in Section 5 we use the
continuity and coercivity constants to approximate the optimal parameter
for our stabilised form. In Section 6 we then show some numerical examples
to verify the convergence rate of our approach.

2 Formulations

2.1 Standard three-field formulation (Hu–Washizu)

In order to derive a mixed formulation for the linear elasticity problem,
we start with the minimisation problem. Let V = H10 (Ω) and V = Vd

for d ∈ {2, 3} . The Hilbert space H10 is defined in the standard way [2, 1].
Let S =

{
d ∈

[
L2 (Ω)

]d×d
: d is symmetric

}
. Let f ∈

[
L2 (Ω)

]d×d . The
variational formulation of the linear elasticity problem with homogenous
Dirichlet boundary condition is

min
(u,d)∈V×S
d=ε(u)

1

2

∫
Ω

Cd : ddx− ` (u) .

We write a weak variational formulation for the relation between the strain
and the displacement in terms of the Lagrange multiplier space T = S to
obtain the saddle-point problem of the minimisation problem. Thus our
problem is to find (u,d,σ) ∈ V × S× T that satisfy

a [(u,d) , (v,e)] + b [(v,e) ,σ] = ` (v) , (v,e) ∈ V × S ,
b [(u,d) ,τ] = 0 , τ ∈ T , (4)

where

a [(u,d) , (v,e)] =

∫
Ω

Cd : edx , b [(u,d) ,τ] =

∫
Ω

[d− ε (u)] : τdx ,
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` (v) =

∫
Ω

f · vdx .

Here the Lagrange multiplier plays the role of stress,

σ = Cd = Cε (u) .

This is a three field formulation, popularly known as the Hu–Washizu formula-
tion for linear elasticity, which is a mixed formulation based on displacement,
strain and stress. Moreover, the existence, uniqueness and stability of the
problem follows [2].

2.2 Extended Hu–Washizu formulation (Five-field
formulation)

In this article, we are interested in an extended Hu–Washizu formulation that
could be used for nearly incompressible elasticity by introducing a pressure-
like variable p =

√
λ (∇ · u) as an extra unknown [8, 10] defined on the

space

Q =

{
p ∈ L2 (Ω) :

∫
Ω

p dx = 0

}
.

We write the standard weak formulation of the linear elasticity problem as a
minimisation problem

min
(u,d,p)∈V×S×Q

d=ε(u), p=
√
λ(∇·u)

1

2

(
2µ

∫
Ω

|d|
2
dx+

∫
Ω

|p|
2
dx

)
− ` (u) ,

where `(u) =

∫
Ω

f · udx .

To obtain the saddle point problem of the minimisation problem, we write a
weak variational equation for both d = ε (u) and p =

√
λ (∇ · u) in terms of

the Lagrange multiplier spaces T = S and M = Q , respectively. This leads
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to a saddle point formulation of finding (u,d, p,σ, ξ) ∈ V × S×Q× T ×M
such that

a [(u,d, p) , (v,e, q)] + b [(v,e, q) , (σ, ξ)] = ` (v) , (v,e, q) ∈ V × S×Q ,
b [(u,d, p) , (τ, η)] = 0 , (τ, η) ∈ T ×M, (5)

where

a [(u,d, p) , (v,e, q)] = 2µ

∫
Ω

d : edx+

∫
Ω

pqdx ,

b [(u,d, p) , (τ, η)] =

∫
Ω

[d− ε (u)] : τdx+

∫
Ω

(
1√
λ
p−∇ · u

)
ηdx .

If we have p =
√
λ (∇ · u), then equation (5) is equivalent to the standard

Hu–Washizu formulation [2], and if we have d = ε (u), then it is equivalent
to the displacement-pressure three-field formulation [8, 10]. We define the
norm on our product spaces as

‖u,d‖V×S =
√
‖u‖21,Ω + ‖d‖20,Ω for (u,d) ∈ V × S ,

‖u, p‖V×Q =

√
‖u‖21,Ω + ‖p‖20,Ω for (u, p) ∈ V ×Q ,

‖d, p‖S×Q =

√
‖d‖20,Ω + ‖p‖20,Ω for (d, p) ∈ S×Q ,

‖u,d, p‖V×S×Q =

√
‖u‖21,Ω + ‖d‖20,Ω + ‖p‖20,Ω for (u,d, p) ∈ V × S×Q .

In order to show that the saddle-point has a unique solution, we need to show
that the following three conditions of well-posedness are satisfied.

1. The linear form ` (·) and the bilinear forms a [·, ·] and b [·, ·] are contin-
uous on the spaces in which they are defined.

2. The bilinear form a [·, ·] is coercive on the kernel space defined as

K = {(u,d, p) ∈ V × S×Q : b [(u,d, p) , (τ, η)] = 0 ,

for all (τ, η) ∈ S×Q} .
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3. The bilinear form b [·, ·] satisfies the inf-sup condition; that is, there
exists γ > 0 so that

inf
(σ,ξ)∈S×Q

sup
(v,e,q)∈V×T×M

b [(v,e, q) , (σ, ξ)]

‖v,e, q‖V×S×Q ‖σ, ξ‖T×M
> γ .

In general, the discrete kernel space is not a subset of a continuous kernel
space. Thus we cannot guarantee that the discrete setting will have the
coercivity property. However, if the bilinear form a [·, ·] is coercive on the
whole space V × S ×Q , then the discrete kernel space will be a subset of
this space and hence the coercivity will be satisfied in the discrete setting.

In our case, the bilinear form a [·, ·] on K is not coercive on the whole space
V × S×Q . It is only coercive on the kernel subspace K ⊂ V × S×Q which
follows from Korn’s inequality:

|a [(u,d, p) , (u,d, p)]| = 2µ ‖d‖20,Ω + ‖p‖20,Ω > C ‖u,d, p‖V×S×Q ,

as d = ε (u) and p =
√
λ (∇ · u) on K. Thus, in order to have the coercivity

condition on the whole space V × S × Q , we now stabilise the bilinear
form a [·, ·] .

3 Stabilisation method and well-posedness
We define the stabilisation method for the bilinear form a [·, ·] so that it is
coercive on the whole space V × S×Q and prove that the conditions of well-
posedness are satisfied. Furthermore, we introduce an additional parameter
in our method so that we can approximate optimal parameters according to
saddle-point theory.

We modify the bilinear form a [·, ·] by adding an extra term as follows:

ã [(u,d, p) , (v,e, q)] = 2µ

(
r

∫
Ω

d : edx+ (1− r)

∫
Ω

ε (u) : ε (v) dx

)
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+

∫
Ω

pqdx .

Thus our problem is to find (u,d, p,σ, ξ) ∈ V × S×Q× T ×M such that

ã [(u,d, p) , (v,e, q)] + b [(v,e, q) , (σ, ξ)] = ` (v) , (v,e, q) ∈ V × S×Q ,
b [(u,d, p) , (τ, η)] = 0 , (τ, η) ∈ T ×M. (6)

Note that when r = 1 , the modified bilinear form ã [·, ·] is equivalent to
the standard Hu–Washizu formulation [2] and when r = 0 , the system is
equivalent to the displacement-pressure three-field formulation [8, 10]. So we
set the parameter 0 < r < 1 to get the stabilised formulation.

In this setting, we need to show that the conditions of well-posedness are
satisfied. The bilinear forms ã [·, ·], b [·, ·] and linear form ` (·) are continuous
by the Cauchy–Schwarz inequality. The coercivity condition satisfied by the
bilinear form ã [·, ·] and the inf-sup condition satisfied by the bilinear form
b [·, ·], follow from Korn’s inequality.

The following lemmas only show the continuity and coercivity coefficient for
the associated bilinear form ã [·, ·] . Ilyas [7] provides the complete proofs.

Lemma 1. The bilinear form ã [·, ·] is continuous on V × S×Q ; that is,

|ã [(u,d, p) , (v,e, q)]| 6 C ‖u,d, p‖V×S×Q ‖v,e, q‖V×S×Q ,

where C =
√
3max {2µr, 2µ (1− r) , 1} > 0 .

Lemma 2. The bilinear form ã [·, ·] is coercive on V × S×Q ; that is,

|ã [(u,d, p) , (u,d, p)]| > α ‖u,d, p‖2V×S×Q ,

where α = min {2CKµr, 2µ (1− r) , CK} > 0 and CK is the Korn’s inequality
constant with

CK ‖ε (v)‖0,Ω > ‖v‖1,Ω .
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Therefore, by saddle-point theory, there exists a unique solution of (6); that
is, (u,d, p,σ, ξ) ∈ V×S×Q×T ×M and the solution is stable with respect
to ` (v) on the right hand side of (6) such that:

‖u‖1,Ω + ‖d‖0,Ω + ‖p‖0,Ω + ‖σ‖0,Ω + ‖ξ‖0,Ω 6 C ‖f‖V′ ,

where V′ is the dual space of V.

4 Discrete system
We use the standard linear finite element space Vh ⊂ H1 (Ω) defined on the
triangulation Th, where

Vh := {v ∈ C0 (Ω) : v|T ∈ P1 (T) , T ∈ Th} .

Let the finite element space for the pressure-like variables be Qh = {q ∈
Vh :

∫
Ω
qdx = 0} , for the displacement Vh = [Vh]

d ∩ V and the strain
Sh = [Vh]

d×d .

Similarly to Lamichhane and Stephan [10], space Mh is the space of the
Lagrange multiplier of the pressure-like variables. The basis functions of
Qh and Mh satisfy the biorthogonality condition∫

Ω

ρiµj dx = cjδij , cj 6= 0 , 1 6 i, j 6 N ,

where {ρ1, ρ2, . . . , ρN} and {µ1, µ2, . . . , µN} are the finite element bases for
Qh and Mh, respectively, δij is the Kronecker symbol, and cj a scaling factor.
In a similar way, we also construct the space Th which is the space of the
Lagrange multiplier of the strain variables, where the basis functions of
Sh and Th satisfy the biorthogonality condition.

To present algebraic formulations of the problem, we use (xu, xd, xp, xσ, xξ) for
the vector representation of the solution and (uh,dh, ph,σh, ξh) as elements
in Vh×Sh×Qh× Th×Mh . Using the representation of discrete functions in
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finite-dimensional spaces and performing integrations, all these bilinear forms
result in matrix-vector multiplications with the vectors being the unknown
variables in the equations. In this way, we define

A =

∫
Ω

ε (uh) : ε (vh)dx , B1 =

∫
Ω

ε (uh) : τh dx ,

B2 =

∫
Ω

(∇ · uh)ηh dx , D1 =

∫
Ω

dh : τh dx ,

D2 =

∫
Ω

phηh dx , M1 =

∫
Ω

dh : eh dx , M2 =

∫
Ω

phqh dx .

Let ~̀ be the vector denoting the discrete form of the linear functional `(·).
After statically condensing out degrees of freedom corresponding to xd, xp,
xσ and xξ, we arrive at the reduced system of displacement[

2µ (1− r)A+ 2µrBT2D
−1
2 M2D

−1
2 B2 + λB

T
1D

−1
1 M1D

−1
1 B1

]
xu = ~̀ .

We approximate the other variables by the following relations:

xd = D−1
2 B2xu , xp =

√
λD−1

1 B1xu ,

xσ = −2µrD−1
2 M2D

−1
2 B2xu , xξ = λD

−1
1 M1D

−1
1 B1xu .

5 Optimal parameter approximation
We consider continuity and coercivity constant to approximate optimal pa-
rameter r that minimises the error in Céa’s Lemma [2]. Our bilinear form
ã [·, ·] has continuity coefficient C =

√
2max {2µr, 2µ (1− r) , 1} and coerciv-

ity coefficient α = min {2CKµr, 2µ(1− r), cK} and CK is the constant in Korn’s
inequality. Thus the smallest possible value of constant in Céa’s Lemma is
obtained when we choose r such that

argmin
r

C

α
= argmin

r

{√
2max {2µr, 2µ (1− r) , 1}

min {2CKµr, 2µ(1− r), CK}

}
.



6 Numerical examples C207

The detailed calculation of r as a function of µ and CK is omitted. In Section 6,
given the value of µ, which depends on the material, and CK, which depends
on the domain size, we calculate and use the optimal parameter as part of
the numerical calculation. However, by some scaling we assume CK = 1 for
simplicity.

6 Numerical examples
In this section we show two numerical examples to verify the convergence rate
of our approach. Since we have uniform refinement, the number of elements
in the error approximation N (Table 1 and 2) corresponds to the uniform
mesh-size 1/N.

In the first example, the right hand side vector f of equation (1) is derived
from the following exact solution for displacement u = (u1, u2) :

u1 = sin(2πy)[−1+ cos(2πx)] +
1

1+ λ
sin(πx) sin(πy) ,

u2 = sin(2πx)[1− cos(2πy)] +
1

1+ λ
sin(πx) sin(πy) . (7)

We compute the errors in L2-norm and the H1-norm and the rates of conver-
gence for u.

This example has Dirichlet boundary conditions on ∂Ω with Ω = [0, 1]
2.

This example is a well behaved problem with a smooth solution that has no
trouble spots. The mesh initialisation is given in the left image of Figure 1.
In this example, we set the Young’s modulus of elasticity E = 1500MPa
and Poisson’s ratio ν = 0.4999 so that a nearly incompressible response is
obtained. The Lamé parameters are

µ =
E

2(1+ ν)
, λ =

Eν

(1+ ν)(1− 2ν)
.

We calculate the optimal parameter based on the continuity and coercivity
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Figure 1: Mesh initialisation.
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constant using the Lamé parameter µ and Korn’s constant CK. According to
Céa’s Lemma, r = 1/2 is the optimal value for our problem.

Tables 1 and 2 give the errors and the rates of convergence for ‖u− uh‖0,Ω
and ‖u− uh‖1,Ω , respectively, for r = 1/3 , r = 1/2 and r = 2/3 . These
tables show that the error rate for ‖u− uh‖0,Ω and ‖u− uh‖1,Ω converges
with higher order than predicted by the theory. However, when we increase
the refinement, both convergence rates decrease to order two in the L2-norm
and order one in the H1-norm. We conclude that the asymptotic rates are not
being achieved at the earlier steps of refinement. The tables also show that
our choice of optimal parameter gives better rates of convergence compared
to other choices of parameter.

In the second example, we use the popular benchmark called Cook’s membrane
problem [11]. It was observed that lower order elements with a pure displace-
ment formulation suffer from a severe locking problem. Cook’s membrane
problem is defined on the two-dimensional tapered panel

Ω = conv{(0, 0), (48, 44), (48, 60), (0, 44)}
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Table 1: Discretisation error ‖u− uh‖0,Ω for equation (7).

N
r = 1/3 r = 1/2 r = 2/3

error rate error rate error rate
8 1.22 1.22 1.22

32 7.75 · 10−1 0.66 7.12 · 10−1 0.78 6.44 · 10−1 0.92

128 1.78 · 10−1 2.13 1.20 · 10−1 2.57 8.86 · 10−2 2.86

512 3.65 · 10−2 2.28 1.87 · 10−2 2.69 2.14 · 10−2 2.05

2048 7.69 · 10−3 2.25 3.08 · 10−3 2.60 5.75 · 10−3 1.90

8192 1.69 · 10−3 2.19 5.11 · 10−4 2.59 1.50 · 10−3 1.94

Table 2: Discretisation error ‖u− uh‖1,Ω for equation (7).

N
r = 1/3 r = 1/2 r = 2/3

error rate error rate error rate
8 8.59 8.59 8.59

32 6.77 0.34 6.87 0.32 7.36 0.22

128 3.15 1.10 3.22 1.09 3.45 1.09

512 1.53 1.04 1.56 1.04 1.62 1.09

2048 7.41 · 10−1 1.05 7.49 · 10−1 1.0590 7.65 · 10−1 1.08

8192 3.61 · 10−1 1.04 3.63 · 10−1 1.05 3.66 · 10−1 1.06

of Plexiglass (with E = 2900MPa and ν = 0.4). This problem has a bending
dominated elastic response. The panel is clamped at one end (x = 0) and
subjected to a shearing load g = (0, 10) on the other end (x = 48) with zero
volume force. In this example, we use the optimal parameter r = 1/2 . The
mesh initialisation is given in the right image of Figure 1. Figure 2 shows the
von Mises stress, representing the three-dimensional stress of the deformed
mesh, and the vertical tip displacement comparison.

Our result show von Mises peak stresses only at the corner (0, 44), as expected.
The vertical tip displacement from our approach also shows good convergence
behaviour without any locking effect. As a comparison, the standard formula-
tion exhibits the locking phenomenon as the vertical displacement blows up.
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Figure 2: Deformed mesh for Cook’s membrane for five field formulation (top),
and vertical tip displacement at (48, 60) versus number of elements on the
right edge (bottom).
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7 Conclusion
In this article, we describe a mixed finite element method to solve elasticity
problems based on the Hu–Washizu formulation. We add a stabilisation term
so that our bilinear form is coercive on the whole space. We calculate the
optimal parameter based on an extension of Céa’s Lemma for mixed finite
element problems, approximated by the continuity and coercivity conditions
of the associated bilinear form. Numerical examples show that our approach
gives the expected results.
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