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Bayesian inference on the Keller-Segel model
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Abstract

The Keller—Segel (ks) model is a system of partial differential
equations that describe chemotaxis—how cells move in response to
chemical stimulus. Simulated data in the form of cell counts are used
to carry out Bayesian inference on the KS model. A Bayesian analysis
on the Ks model is performed on three sets of initial conditions. First,
the KS model is solved numerically using a finite difference method and
Bayesian inference is performed on parameters of the model such as the
cell diffusion and chemical sensitivity. We investigate the predictive
posterior distribution of future data and the convergence of the 95%
credible interval of cell diffusion at different grid sizes using the three
different initial conditions.
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1 Introduction

Chemotaxis is the movement of an organism in response to a chemical stim-
ulus [3]. The most well-known and heavily studied mathematical model of
chemotaxis is the Keller—Segel Model (KS) [8] which was first introduced in
1970. In the KS model the cells undergo a random walk which, at a population
level, corresponds to a diffusion process. In the model, the response of the cells
to chemical stimulus is modelled by biasing the random walk in the direction
towards or away from the gradient of the chemical concentration. This gives a
particular reaction-diffusion system of partial differential equations. Modeling
chemotaxis from a differential equation point of view provides a population-
based model of cells which does not require any cells to be distinguished, but
rather assumes a homogeneous population density of cells.
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The generalized Keller—Segel Model for chemotaxis is

u; = VIki(u,v)Vu + ky (u, v)uVv] + k3 (u, v), (1)
vi = DAV + K4 (u,v) — ks(u, v)v,

where u(x, t) denotes the cell density at position x at time t, v(x,t) denotes
the chemical signal concentration, kq is the diffusivity of the cells, k; is the
chemo-tactic sensitivity, ks describes cell growth and death, k4 represents the
chemo-repellent production and ks the chemo-repellent degradation. As shown
by equation (1), the cell migration is dependent on the chemical gradient.
Here, the chemicals’ primary mechanism of movement follows Fick’s second
law; that is, the diffusion equation which describes how diffusion changes a
chemicals concentration over time. The cells’ movement is described with a
diffusion term plus the attraction to or repulsion from the chemical. We set k3
equal to zero as we assume there is no change in the number of cells over
time. Furthermore, k4 and ks are also set equal to zero, which corresponds to
no production or degradation of the chemo-repellent.

The main focus of this article is performing Bayesian inference on the KS
model. The main goal of Bayesian inference on the KS model is to derive the
posterior distribution over the parameter space © given the data. Sherratt et
al. [10] fitted the KS model to experimental data of chemically controlled cell
movement. One drawback of the KS model discussed by Sherratt et al. is the
specification of the coefficients of the model with the chemical concentration.
Performing Bayesian inference eliminates the need to specify specific values of
the parameter vector 0 € © when modelling data, but instead estimates them
via the probability distribution of 8 given the data. This so-called posterior
distribution is obtained by specifying a prior distribution and a likelihood
function for the observed data. Furthermore, as a prior distribution, we
incorporate work done by Harvath and Aksamit [7] on the chemo-attractant
activity and migration of neutrophil towards certain peptides.



2 Numerical scheme for the Keller-Segel model C184

1.1 Data

We demonstrate our approach using simulated data sets. This has the
advantage of better assessing the method since we can empirically study its
convergence properties; for example, that we recover the true parameters as
we increase the number of data points, and that the predictive inference is
able to correctly forecast the out-of-sample data.

The data is in the form of M x N arrays which are cell counts at each of
the M discretized spatial steps conditional on each of the N time points.
Intuitively, these arrays are the distribution of cells throughout the spatial
domain y conditional on time t. A time grid array (t-grid) of N + 1 points
represents the small time steps at which the data was recorded, from the
starting time to to the final time t;. The spatial grid array (y-grid) represents
the domain and consists of M spatial steps over the interval [0,600]. Three
trials, referred to here as Panels, corresponding to different initial conditions
of the cells at t = 0. The simulated data was generated by first solving the
KS model numerically and then, after multiplying by the number of cells to
get the data in terms of cell counts, simulating Poisson random variables with
expected value equal to the solution of the KS model at each spatial grid
point. Applying a Poisson random variable gives the data in terms of the
number of cells for each spatial grid point in the domain over time t. The
initial conditions of the Panels are discussed in Section 2. The three different
Panels are pictured in Figure 1.

2 Numerical scheme for the Keller—Segel
model

The Backward Time Central Space (BTCS) implicit method is used to solve the
KS model numerically. The backward method was used due to its robustness
at different step sizes; however, one disadvantage is that it is computationally
expensive due to the inverse of the tri-diagonal matrix required when solving
a discretized version of the KS model. In one dimension, the KS minimal
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Figure 1: Model (left) and simulated data (right). The model data shows areas
of higher probability over spatial domain y and time t, coloured according
to the left colour-map. The simulation data shows the distribution of cells

across Yy and t, coloured according to the right colour-map.
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where « and ¢ are the diffusion coefficients of the cells and chemical, respec-
tively, x is the chemo-sensitivity term, and L is the length of the system.
Different forms of the sensitivity parameter x exist in the literature. Two forms
suggested are a positive constant x; [1] and a logarithmic law, x oc 1/c [2, 4.
We define the chemotactic sensitivity function ¥, a variant of the receptor ki-
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netic law function proposed by Mesibov et al. [9]: x% = %0 Vinax/ (Vinax + | % ),
where o is the chemo-sensitivity coefficient and V.« is the maximum velocity
of the cells. This velocity restricts the speed of the cells as they become
saturated with the chemical repellent.

Let U} denote the discretized value of u(x;, tn) at points i,n. The discretiza-
tion of the first line of equation (2) is

WU up - 2upeur, enun —enuy, o
At (Ax)? 2Ax ’

where ¢ = X% , At is the time step, and Ax is the spatial step. In the above
equation, the two functions in the term x% are coupled, and so the first order
central difference is approximated as one function instead of using the product
rule. The substitution of ¢ makes equation (3) much more general and it
can serve as a numerical solver for a more general class of advection-diffusion
equations. Performing the coupled discretization also makes the derivation
more elegant. Solving for U.{‘*] creates the tri-diagonal matrix with each term
on the diagonals

U ! = (A QP UE + QA+ DUF — (A= §F UL,

At
(Ax)% -

with constant A =

The well-known discretization of the second line of equation (2) (also known
as the heat equation) for the chemical v(x, t), using the BTCS implicit method
can be shown to construct the tri-diagonal matrix

VA = eV (14 20) VR — VR

1

At
(Ax)% ~

where r =

2.1 Boundary conditions

The cells or chemical cannot move through the boundaries, hence, no-flux
boundary conditions are necessary to capture this effect. The analytical flux
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of the cells is defined by

ou ov

=o0a——x—U.
Ju 0x Xax
At the boundaries [0, L], with the flux equal to zero, we obtain a Robin type
boundary condition, which is a weighted linear combination of Dirichlet and
Neumann boundary conditions [6]. Practically, on a discretized domain, flux is
analysed at the boundaries with the addition of a spatially changing advection
term.

The left and right boundary conditions are obtained from (3) for i = 0 and
i =50, respectively. But these boundary conditions create so-called ghost

nodes at points i = —1 and i = 51 which are resolved by setting U™, = Uy,
¢, = oy, Us; = Us, and ¢y = ¢5,. The resulting boundary conditions are

Left Boundary: UJ~' = (A — ¢3 +1UF — (A — dPIUT,
Right Boundary: UL " = —(A + ¢L) Wl + (A + ¢l + 1)UL, .

To satisfy the conservation of mass property of the chemical, the boundary
conditions of the chemical are

Left Boundary: V(;I_] (T+r)Vy + (—r)Vi,
Right Boundary: Vg})_] = (—1)Vpo + (1 + 1)V,

because the homogeneous Neumann boundary conditions given by spatial
derivatives vy(L,t) = 0 and v (0,t) = O give discrete values VI = VI and

2.2 Initial conditions

The initial conditions are constructed by dividing the spatial dimension into
three equal regions and setting the concentration of cells and chemical in
each to be constant. The initial conditions are similar to those described by
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Table 1: Initial conditions of KS model.
Panel 1 Panel 2 Panel 3

Cells (1,0,0] [0,1,0] [0,0,1]
Chemical [1,0,0.25] [0,1,0] 0,0,1]

Sherratt et al. [10] for the Boyden chamber assay except we model a third
partition, and thus have a lower, upper and middle well, into which we are
free to inject cells and the chemo-repellant at the initial time. The three
divisions of the spatial domain [0, 600], referred to as lanes, are

Lane 1:0 <x <200, Lane 2:200<x<400, Lane 3:400<x<600.

By assigning a concentration value to each of the lanes, we define uniform
distributions of the concentration of chemical v(x,t) or cells u(x, t) injected
at the initial time. For convenience the initial conditions are represented as
lists of the chemical and cell concentrations in each lane. Panel 1 has [1,0,0]
and [1,0,0.25] which represents 100% of the cells and 100% of the chemical
injected into Lane 1 and 25% of the chemical injected into Lane 3. The edges
of the initial conditions were also slightly smoothed to reduce error in the
numerical solver.

3 Bayesian inference on the Keller—Segel
model

We use Bayesian inference to find the posterior probability densities of the
parameters in the model. This work is an ideal application of Bayesian
inference: there is a generative model parameterised by variables 8 € © , we
establish priors to limit the range of ©, and seek a probability distribution
for © which indicates the subset of ® compatible with the observed data.



3 Bayesian inference on the Keller-Segel model C189

3.1 In context of PDEs

Computing expectations with respect to the posterior distribution in Bayesian
analysis requires computing complicated integrals. The integrals can be
estimated by simulation if we are able to sample from the posterior distribution
of the parameters. Often, thousands of samples are taken to obtain an accurate
representation. Evaluating the likelihood in our context involves numerically
solving the system of partial differential equations for each required posterior
sample.

3.2 Ensemble sampler

Goodman and Weare in 2010 [5] proposed the ensemble sampler, a Monte Carlo
Markov Chain (MCMC) algorithm, to sample from distributions. The MCMC
is used to sample probability distribution, particularly when direct sampling
or other simpler sampling schemes are not possible. One of the benefits
of the ensemble sampler is that it is affine invariant; that is, unchanged
by linear transformations and translations of the parameters. This allows
sampling from skewed distributions to be significantly faster than standard
MCMC methods which may require coordinate re-scaling or hard to compute
determinants for the transformations.

3.3 Likelihood

Assuming conditional independence of the data given the parameters, the
log-likelihood of observed outcome X = (Xi,...,Xn) is

log L(O | X) = Zlogp x| ©),
i=1

for probability density p(- | -).

Our data are cell counts per spatial interval, which we model as Poisson data
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with log-likelihood

n

log L(O | x1,X2y ...y Xpn) = —MO — Zlog(xil) + log(0) in.

i=1 i=1

3.4 Simulation setting and prior selection

The parameters we subject to inferencing are the three coefficients in (2) and
the number of cells in the domain [, X0, ¢, ncells] . We introduce a small time
offset parameter T, € (0,0.5] to the model which delays the start time by to.
Also, a spatial offset parameter {jo € [—15, 15] shifts the boundaries by that
value. The addition of these parameters take into account experimental errors
that arise in practical situations. To implement these constraints, the model
is simulated on the domain t € [2,30], y = [30,570] .

We set the true parameters to be in the ranges of estimates determined by
Tranquillo et al. [11]. Defining the spatial grid in micrometers (um), this
results in Qe = [a, ¢, Xo, neells, To, §o] = [300,2000,6 x 10°, 1000, 0.42, 10]
which are the underlying parameters of the data simulated from the model.

For each of the three Panels, a Bayesian model was constructed with six pa-
rameters and their priors. We proposed, 0., = [800, 1900, 3 x 10°, 900, 0.3, 5]
which serves as the initial value of the Nealder—Mead algorlthm to find the
maximum a posteriori (MAP) estimation. In this case, uninformative, or flat,
priors were used on the first four parameters to get an idea of the posterior
densities as more evidence becomes available. Priors are also enforced with
a positivity constraint on parameters such as the diffusion coefficients and
time offset. We sample 14000 draws from the posterior and use the first
4000 samples as burn-in.
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Table 2: Prior distribution of parameters.

Parameter Prior Distribution
Cell diffusion coefficient o lognorm (1648.82,2161.2%)
Chemo-repellent diffusion coefficient ¢ lognorm(3662.6,5618.677)
Chemo-tactic sensitivity Xo lognorm (8243 706, 108059877%)
Number of cells lognorm(1877.13,1303.9?)
Time offset T, beta(1.0,1.0)
Spatial §o N(0, 10%)

4 Results

To predict a future observation y at, say, time step t + 1, the predictive
posterior distribution is computed from

p@ny)=j®p(g,e|y)de=J®p@|e)p(e|y)de. (4)

Simulated data is generated on a (M, N+1) grid and the posterior model p(0 |
y) is obtained withholding the last observation. Based on this posterior, we
easily simulate p(y | y) from (4) and compare the predictive distribution to
the out-of-sample true cell counts at the last time-point.

Figure 2 shows the distribution of future observations of the data in Panels 1,
2 and 3 compared to the simulated data. Using three different initial conditions,
this figure shows that our posterior distribution gave a good prediction at
future data points.

To test the convergence of the Bayesian posterior to the true parameters 0;,yue
as more data becomes available, the posterior was sampled for each Panel at
different grid sizes. The model was tested on M x N square grids (M = N)
for M =50, 75,100, 200,500 . The 95% credible intervals are plotted for cell
diffusion o for each Panel at each grid size. Figure 3 shows the convergence
of the Bayesian posterior to the true parameter a at varying grid sizes.
Theoretically, by the Bernstein—von Mises theorem [12, Chapter 10.2|, we
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Figure 2: Predictive posterior distribution (PPD) versus simulated data for

Panels 1, 2, and 3.
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expect the scale of the posterior to asymptotically be oc 1/y/n, where n is
the number of data points.

The convergence of cell diffusion « in each Panel, shown in Figure 3, gives
insight into experimental conditions because different initial conditions cor-
respond to different experimental conditions. We see in Figure 3 that at
smaller grid sizes, Panel 2 poorly estimates parameter a, while Panels 1 and 3
give more accurate estimates of the parameter on all grid sizes. Convergence
analysis was done for all parameters (not shown) which yield similar results
as cell diffusion o.

5 Discussion and conclusion

We demonstrated how to carry out Bayesian inference in the Keller—Segel
model. We computed the posterior predictive distribution and, moreover,
demonstrated empirical convergence of the model parameters as the grid size
increased in a simulated data setting. The simulated data was obtained using
established parameter values in the literature. By analyzing the convergence
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Figure 3: Convergence of « to a for varying grid sizes.
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of these parameters to their true values, we find that at moderate square
grid sizes (50,100, 150), certain initial conditions give better estimates of
certain parameters. For example, as seen by Figure 3, Panel 3 gives good
estimates of the cell diffusion « at all grid-sizes, in contrast to Panel 2. By
determining which Panel corresponds to more accurate estimates of each
parameter, we can inform the experimenters on what experimental condition
to use with what parameter they seek to determine. As a way to obtain
more accurate credible intervals for the parameters, future work will include
hierarchical models which give a way of using the posterior distribution as a
prior distribution in the next iteration of sampling from the posterior. Future
work will also include reducing the number of time grid points to determine
the trade-off between accurate estimates and computation time, as well as the
addition of a background noise parameter which accounts for the experimental
error of false detection of cells.
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