
ANZIAM J. 48 (CTAC2006) pp.C558–C572, 2007 C558

Parallelisation of a finite volume method for
hydrodynamic inundation modelling

S. G. Roberts1 L. Stals2 O. M. Nielsen3

(Received 14 September 2006; revised 27 November 2007)

Abstract

Geoscience Australia and the Australian National University are
developing a hydrodynamic inundation modelling tool called anuga
to help simulate the impact of natural inundation hazards such as
riverine flooding, storm surges and tsunamis. The core of anuga is a
Python implementation of a finite volume method, based on triangular
meshes, for solving the conservative form of the Shallow Water Wave
equation. We describe the parallelisation of the code using a domain
decomposition strategy where we use the metis graph partitioning
library to decompose the finite volume meshes. The parallel efficiency
of our code is tested using a number of mesh partitions, and we verify
that the metis graph partition is particularly efficient.

See http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/153
for this article, c© Austral. Mathematical Soc. 2007. Published November 27, 2007. ISSN
1446-8735

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/153

Contents C559

Contents

1 Introduction C559

2 Model C560

3 Finite volume method C561

4 Parallel implementation C563
4.1 Subdividing the global mesh C563

5 Performance analysis C568
5.1 Advection, rectangular mesh C568
5.2 Advection, Lake Merimbula mesh C569
5.3 Shallow water, Lake Merimbula mesh C570

6 Conclusions C570

References C571

1 Introduction

Hydrodynamic modelling allows flooding, storm surge and tsunami hazards
to be better understood, their impacts to be anticipated and, with appro-
priate planning, their effects to be mitigated. Geoscience Australia in col-
laboration with the Mathematical Sciences Institute, Australian National
University, is developing a software application called anuga to model the
hydrodynamics of floods, storm surges and tsunamis. These hazards are mod-
elled using the conservative shallow water equations which are described in
section 2. In anuga the solution of these equations are approximated using a
finite volume method based on triangular meshes, as described in section 3.
Nielsen et al. [4] provides a more complete discussion of the method and

2 Model C560

also provides a validation of the model and method on a standard tsunami
benchmark data set. Section 4 provides a description of the parallelisation of
the code using a domain decomposition strategy and in section 5 preliminary
timing results verify the scalability of the parallel code.

2 Model

The shallow water wave equations are a system of differential conservation
equations which describe the flow of a thin layer of fluid over terrain. The
form of the equations are

∂U

∂t
+
∂E

∂x
+
∂G

∂y
= S ,

where U =
[
h uh vh

]T
is the vector of conserved quantities: water

depth h, and horizontal momentum (u, v)h. Other quantities entering the
system are bed elevation z and stage w (absolute water level), where these
variables are related via w = z + h . The horizontal fluxes in the x and y
directions are

E =

 uh
u2h+ gh2/2
uvh

 and G =

 vh
vuh
v2h+ gh2/2

 ,

and the source term (which includes gravity and friction) is

S =

 0
−gh(zx + Sfx)
−gh(zy + Sfy)

 ,

where Sf is the bed friction. We model the friction term using Manning’s
resistance law

Sfx =
uη2
√
u2 + v2

h4/3
and Sfy =

vη2
√
u2 + v2

h4/3
,

3 Finite volume method C561

Figure 1: Conserved quantities h, uh and vh are associated with the cen-
troid of each triangular cell. From the values of the conserved quantities at
the centroid of the cell and its neighbouring cells, a discontinuous piecewise
linear reconstruction of the conserved quantities is obtained.

in which η is the Manning resistance coefficient.

As demonstrated by Zoppou and Roberts [5], and Nielsen et al. [4], these
equations provide an excellent model of flows associated with inundation such
as dam breaks and tsunamis.

3 Finite volume method

We use a finite volume method for approximating the solution of the shallow
water wave equations [5]. The study area is represented by a mesh of trian-
gular cells as in Figure 1, in which the conserved quantities h, uh, and vh,
in each cell are to be determined. The size of the triangular cells are varied
within the mesh to allow greater resolution in regions of particular interest.

The equations constituting the finite volume method are obtained by
integrating the differential conservation equations over each triangular cell of
the mesh.

3 Finite volume method C562

Introducing some notation, we use i to refer to the index of the ith trian-
gular cell Ti, and N (i) to the set of indices referring to the cells neighbouring
the ith cell. The area of the ith triangular cell is Ai and lij is the length of
the edge between the ith and jth cells.

By applying the divergence theorem we obtain for each cell, an equation
which describes the rate of change of the average of the conserved quantities
within each cell, in terms of the fluxes across the edges of the cell and the
effect of the source term. In particular, for each cell

dUi

dt
+

1

Ai

∑
j∈N (i)

Hijlij = Si ,

where Ui is the vector of conserved quantities averaged over the ith cell, Si is
the source term associated with the ith cell and Hij is the outward normal
flux of material across the ijth edge.

The flux Hij is evaluated using a numerical flux function H(·, · ; ·) which
is consistent with the shallow water flux in the sense that for all conserved
quantity vectors U and spatial vectors n

H(U,U; n) = E(U)n1 + G(U)n2 .

Then the flux across the ijth edge is

Hij = H(Ūi(mij), Ūj(mij); nij) ,

where mij is the midpoint of the ijth edge and nij is the outward pointing
normal of the ijth edge. The function Ūi(x, y) for (x, y) ∈ Ti is obtained from
the average conserved quantity values, Uk, for k ∈ {i}∪N (i) (ith cell and its
neighbours). We use a second order reconstruction to produce a piecewise
linear function reconstruction, Ūi(x, y), of the conserved quantities for all
(x, y) ∈ Ti for each cell (see Figure 1). This function may be discontinuous
across the edges of the cells, but the slope of this function is limited to avoid
artificially introduced oscillations.

4 Parallel implementation C563

The numerical flux function H(·, · ; ·) is obtained by rotating the coordi-
nate system so the outward normal is in the x direction. This then reduces
the normal flux calculation to a one dimensional flux calculation. The central
upwind scheme as described by Kurganov et al. [3] then approximates the
resulting fluxes of the one dimension problem.

In the computations presented we use an explicit Euler time stepping
method with variable time stepping adapted to the Courant Friedrichs Levy
condition number.

4 Parallel implementation

To parallelise our algorithm we use a domain decomposition strategy. We
start with a global mesh which defines the domain of our problem. We must
first subdivide the global mesh into a set of submeshes. This partitioning
is done using the metis partitioning library [1]. We demonstrate the effi-
ciency of this library in the following subsections. Once this partitioning
has been done, a layer of ‘ghost’ cells is constructed and the correspond-
ing communication patterns are set. Then we start to evolve our solution.
The computation progresses independently on each submesh, until the end
of the time step when the appropriate information is communicated among
processing elements.

4.1 Subdividing the global mesh

The first step in parallelising the code is to subdivide the mesh into, roughly,
equally sized partitions to ensure good load balancing. On a rectangular
mesh this may be done by a simple coordinate based dissection method,
but on a complicated domain such as the mesh shown in Figure 2, a more
sophisticated approach must be used. We use the metis partitioning library

4 Parallel implementation C564

Figure 2: The global Lake Merimbula mesh

Table 1: 4-way and 8-way partition tests of Merimbula mesh showing the
percentage distribution of cells between the submeshes.

cpu 0 1 2 3
Cells 2757 2713 2761 2554

% 25.6% 25.2% 25.6% 23.7%

cpu 0 1 2 3 4 5 6 7
Cells 1229 1293 1352 1341 1349 1401 1413 1407

% 11.4% 12.0% 12.5% 12.4% 12.5% 13.0% 13.1% 13.1%

4 Parallel implementation C565

Figure 3: The global Lake Merimbula mesh from Figure 2, partitioned into
four submeshes using metis.

4 Parallel implementation C566

based on Karypis and Kumar’s [2] recommendations. Figure 3 shows the
original global grid partitioned over four submeshes. Note that one submesh
may comprise several unconnected mesh partitions and Table 1 gives the
node distribution over four submeshes and eight submeshes. These results
imply that metis gives a reasonably well balanced partition of the mesh.

Ghost cells Consider the example subpartitioning given in Figure 4. The
top mesh represents the global mesh, whereas the two lower meshes display
the partitioning of the global mesh (together with extra ghost cells to facili-
tate communication) onto two processors.

As an example, during the evolution calculations, cell 2 (residing on pro-
cessor 0) will need to access information from its global neighbour, cell 3
(residing on processor 1). A standard approach to this problem is to add
an extra layer of cells, which we call ghost cells, to each submesh, on each
processor. The ghost cells are used to hold information that an ordinary cell
in a submesh needs to complete its calculations. The values associated with
the ghost cells need to be updated through communication calls usually only
once every time step (at least for first order time stepping). Such commu-
nication patterns are determined and recorded before sub partitioning the
mesh into submeshes.

The ghost cells in each submesh are treated exactly the same as any
other cell, the only way to differentiate them is to look at the communication
pattern. This means that the code is essentially the same whether it is being
run in serial or parallel, the only difference is a communication call at the
end of each time step and an extra if statement in the local calculation of
the time step constraint to ensure that the ghost cells are not used in that
calculation.

4 Parallel implementation C567

4

processor 0 processor 1

0
1

2

3

4
5

6

0
1

2

4

3

5

3

6

5

2

Figure 4: An example subpartitioning of a global mesh into two submeshes,
showing the ghost nodes used in the two submeshes.

5 Performance analysis C568

5 Performance analysis

To evaluate the performance of the code on a parallel machine we ran some
examples on a cluster of four nodes connected with PathScale InfiniPath htx.
Each node has two amd Opteron 275 (Dual core 2.2 GHz Processors) and
4 GB of main memory. The system achieves 60 Gigaflops with the Linpack
benchmark, which is about 85% of peak performance. For each test run we
evaluate the parallel efficiency as

Ep =
T1

pTp

100 ,

where Tp = max0≤i<p{ti} , p is the total number of processors and ti is the
time required to run the evolution code on processor i. Note that ti only
includes the time required to do the finite volume evolution calculations, not
the time required to build and subpartition the mesh.

5.1 Advection, rectangular mesh

The first example solves an advection equation on a rectangular mesh of size
n by m. Table 2 show the efficiency results for different values of n and m.
The examples where p ≤ 4 were run on one Opteron node containing four
processors, the p = 8 example was run on two nodes (giving a total of eight
processors). The communication within a node is faster than the communi-
cation across nodes, so we would expect to see a decrease in efficiency when
we jump from four to eight processors. On the other hand, the efficiency is
likely to increase with n and m, due to an increased ratio between interior
and exterior triangles and hence an increased ratio of computation to commu-
nication. The results displayed in Table 2 verify this, except perhaps for the
slightly higher than expected efficiency of the p = 2 , n = 80 , m = 80 case.
Generally the efficiency results shown here are consistent and competitive.

5 Performance analysis C569

Table 2: Parallel efficiency results for the advection problem on n by m
rectangular meshes using p processors.

40 by 40 mesh 80 by 80 mesh 160 by 160 mesh
p Tp (sec) Ep(%) Tp (sec) Ep(%) Tp (sec) Ep(%)
1 36.6 282. 2200.
2 18.8 98 143. 99 1126. 98
4 10.2 90 75.1 94 569. 97
8 6.39 72 41.7 85 304. 90

Table 3: Parallel efficiency results for the advection equation and the shal-
low water equation on the Lake Merimbula mesh for p processors.

Advection Shallow water eqn
p Tp (sec) Ep(%) Tp (sec) Ep(%)
1 145.0 7.04
2 77.5 94 3.62 97
4 41.2 88 1.94 91
8 23.0 79 1.15 76

5.2 Advection, Lake Merimbula mesh

We now look at another advection example where the mesh comes from
a study of water flow in Lake Merimbula, New South Wales. The mesh is
shown in Figure 2. The results are given in Table 3. These are good efficiency
results, especially considering the structure of this mesh.

6 Conclusions C570

5.3 Shallow water, Lake Merimbula mesh

The final example we look at is the shallow water equation on the Lake Mer-
imbula mesh. The results for this case are also listed in Table 3. Efficiency
for two and four processors is again good. For eight processors the efficiency
falls off rather quickly.

On profiling the code we found that the loss of efficiency is due to the
boundary update routine. To allow maximum flexibility in experimenting
with different boundary conditions, the boundary routines are written in
python (as opposed to most of the other computationally intensive kernels
which are written in C). When running the code on one processor the bound-
ary routine accounts for about 72% of the total computation time. The
metis subpartition of the mesh produced an imbalance in the number of ac-
tive boundary edges in each subpartition. The profiler indicated that when
running the problem on eight processors, Processor 0 spent about 3.8 times
more time on the boundary calculation than Processor 7, indicating about
3.8 times as many active boundary edges. This load imbalance reduced the
parallel efficiency. In the future the boundary routine will be rewritten in C

to reduce its overall contribution to the computation and so reduce the effect
of this active boundary imbalance.

6 Conclusions

anuga is a flexible and robust modelling system that simulates hydrody-
namics by solving the shallow water wave equation in a triangular mesh. It
models the process of wetting and drying as water enters and leaves an area
and is capable of capturing hydraulic shocks due to the ability of the finite
volume method to accommodate discontinuities in the solution. It simulates
the behaviour of hydrodynamic natural hazards such as riverine flooding,
storm surge and tsunami.

References C571

The use of the parallel code will enhance the modelling capability of
anuga and will form part of Geoscience Australia’s ongoing research effort
to model and understand the potential impact from natural hazards in order
to reduce their impact on Australian communities.

References

[1] George Karypis. METIS—serial graph partitioning and fill-reducing
matrix ordering.
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview, 2006.
C563

[2] George Karypis and Vipin Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on Scientific
Computing, 20(1):359–392, 1999. doi:10.1137/S1064827595287997 C566

[3] A. Kurganov, S. Noelle, and G. Petrova. Semidiscrete central-upwind
schemes for hyperbolic conservation laws and Hamilton–Jacobi
equations. SIAM Journal of Scientific Computing, 23(3):707–740, 2001.
doi:10.1137/S1064827500373413 C563

[4] O. Nielsen, S. Roberts, D. Gray, A. McPherson, and A. Hitchman.
Hydrodynamic modelling of coastal inundation. In A. Zerger and R.M.
Argent, editors, MODSIM 2005 International Congress on Modelling
and Simulation, pages 518–523. Modelling and Simulation Society of
Australia and New Zealand, December 2005.
http://www.mssanz.org.au/modsim05/papers/nielsen.pdf. C559,
C561

[5] C. Zoppou and S. Roberts. Catastrophic Collapse of Water Supply
Reservoirs in Urban Areas. ASCE J. Hydraulic Engineering,
125(7):686–695, 1999. doi:10.1061/(ASCE)0733-9429(1999)125:7(686)
C561

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827500373413
http://www.mssanz.org.au/modsim05/papers/nielsen.pdf
http://dx.doi.org/10.1061/(ASCE)0733-9429(1999)125:7(686)

References C572

Author addresses

1. S. G. Roberts, Dept. of Maths, Australian National University,
Canberra, Australia.
mailto:stephen.roberts@anu.edu.au

2. L. Stals, Dept. of Maths, Australian National University, Canberra,
Australia.
mailto:linda.stals@anu.edu.au

3. O. M. Nielsen, Risk Assessment Methods Project, Geospatial and
Earth Monitoring Division, Geoscience Australia, Symonston,
Australia.
mailto:Ole.Nielsen@ga.gov.au

mailto:stephen.roberts@anu.edu.au
mailto:linda.stals@anu.edu.au
mailto:Ole.Nielsen@ga.gov.au

	Introduction
	Model
	Finite volume method
	Parallel implementation
	Subdividing the global mesh

	Performance analysis
	Advection, rectangular mesh
	Advection, Lake Merimbula mesh
	Shallow water, Lake Merimbula mesh

	Conclusions
	References

