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Abstract

Metamodels provide an efficient means for the approximation of
response surfaces of systems, particularly for resource-intensive exper-
iment designs. It is oftentimes the case that interest is focused on a
specific region of the parameter space. We propose an efficient recipe for
the local approximation of response surfaces using Polynomial Chaos
techniques. For systems embedded in high-dimensional settings, a
basis-adapted spectral representation is exploited locally for dimension
reduction. The proposed approach comprises an initial heuristic global
solution for parameter space exploration using an approximate global
Polynomial Chaos metamodel, followed by a local design being refined
through an active learning scheme. The problem of turbulent flow
around a symmetric airfoil is considered. Statistical estimators based
on the local, active, basis-adapted approach show less bias and faster
convergence as compared to the estimators from a global solution.
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1 Introduction
In a plethora of domains, such as uncertainty quantification and optimization,
metamodels have proved their worth for efficiently approximating responses
of systems. In particular, metamodels play a central role for problems
that involve expensive-to-evaluate designs. To approximate the response
surface of such resource-intensive models, a metamodel training algorithm
that minimizes the size of the experiment without loss of accuracy is essential.

Multiple studies examined the experiment design problem for metamodel
response surface approximation [10, 3, 1]. An adaptive experiment design
approach for local metamodel approximation over a region of interest of
the parameter space using a weighted integrated mean squared error was
proposed by Picheny et al. [10]. Another study used optimal experiment
designs through active learning for reliability purposes [1]. A detailed review
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of metamodels within the scope of the design of experiment settings is outside
the scope of this work.

In some practical applications, interest is focused on a specific region of the
parameter space. As such, local, variance-optimal experiment designs, could
be exploited to satisfy, ideally, a suite of factors [2], including minimizing
the size of the experiment design, providing error estimates at every design
phase, accommodating increasingly complex designs in a sequential scheme,
maximizing the accuracy of the fit, and providing a measure of lack of
fit. Moreover, one challenge that still stands in the way of conventional
metamodels is the so-called curse of dimensionality some metamodels face in
high-dimensional parameter spaces.

2 Formulation

2.1 Overview

Let G denote the parameter space, and L ⊂ G the region of interest. A global
heuristic solution is initially obtained based on a space-filling design of G,
from which a region of interest L can be obtained based, for example, on
a maximization of some objective function centered on information gain or
local uncertainty. The global heuristic solution involves essentially a low-order
Polynomial Chaos (pc) metamodel over G from which a region of interest L
is identified and a local metamodel is built over L. Once we identify a local
region L in the parameter space G based on an information gain criterion
evaluated from the heuristic solution from the global pc metamodel, efforts
are focused on the experiment design at the local metamodel. Specifically,
an active sampling scheme is leveraged at the local metamodel level to
sequentially refine the local design. At the local metamodel level over L, a
basis-adapted pc formulation is proposed as a dimension reduction scheme for
problems embedded in high-dimensional settings. The local pc metamodel
over L is adaptively refined until some predefined convergence criteria are
met.
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2.2 Global/local approximations

Following the global/local methodology adopted herein, consider a global
metamodel and a corresponding local metamodel as approximations to the true
response of a given system. Consider a space-filling design, denoted by HG,
tailored for building the global metamodel over the parameter space and
consisting ofNG space-filling design samples, with input XG and corresponding
output YG, that is HG : XG = (x1, . . . , xNG

) , YG(XG) = (y1, . . . , yNG
) , i =

1, . . . ,NG , xi ∈ G . Similarly, let HL denote a space-filling design for the
local metamodel consisting of NL design points build over the subregion
L ⊂ G , that is HL : XL = (x1, . . . , xNL

) , YL(XL) = (y1, . . . , yNL
) , whereby

i = 1, . . . ,NL , xi ∈ L . The global pc metamodel is trained with respect to
the space-filling design in the global domain HG, while the local pc metamodel
is built using the space-filling design HL over L. We adopted the Maximin
algorithm [7] as a space-filling design for the training of both the local and
global metamodels.

2.3 Active sampling

In the proposed active sampling formulation, adaptive samples are appended
to the local design set HL. The local space-filling design set is sampled
optimally in a sequential scheme. At each iteration, the next design sample
is selected based on a maximization of the functional representation of the
information gain evaluated at the current step, following HL

i+1 = HL
i ∪ x∗i ,

i = 1, . . . ,NL , x∗i ∈ L . We aim at finding an optimal choice of XL such that
the ensuing metamodel best approximates the response surface locally with
the fewest design samples.

2.4 Basis-adapted polynomial chaos

Consider a probability space (Ω,F, P) consisting of a sample space Ω, a
σ-algebra F on Ω, and a corresponding probability measure P on (Ω,F).
For a Quantity of Interest (qoi) q, defined as a function of d-dimensional
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random input parameters ξ ∈ Rd on Ω, for some forward operator F, we have
q = F(ξ) . Under the finite variance assumption, that is q ∈ L2(Ω,F, P) , the
random variable q : Ω→ R admits a spectral representation following a pc
expansion [4]

q(ξ) =
∑
α

qαΨα(ξ) , (1)

where α represents a multi-index that associates for each variable {ξi}
d
i=1 a

degree of the multivariate polynomial Ψα with corresponding coefficients qα.
The latter can be expressed in terms of the corresponding univariate polyno-
mials. Let c denote the vector of coefficients that we are solving for and u
the corresponding output vector. Consider M realizations of the random
system inputs, and a truncated form of equation (1) with only K terms. The
Vandermonde design matrix Ψ can be defined as Ψ = [Ψij] , Ψij = Ψα(j)(ξ(i)) ,
i ∈ [1,M] , j ∈ [1, K] . We solve the l2 minimization problem of the form

c∗ = argmin
c
‖Ψc− u‖2 . (2)

It is evident at this point that as the number of random inputs increase, the
size of the vector of coefficients c increases beyond what practical numerical
recipes can efficiently solve. To address this issue, basis adaption techniques
have been developed [12], and applied successfully in forward [6], inverse [13, 5],
and optimization under uncertainty problems [11]. Tipireddy and Ghanem [12]
review in detail the theoretical background behind basis-adapted pc.

2.5 Expected feasibility function

Let effG define the Expected Feasibility Function evaluated from the global
metamodel over the parameter space G, and effL

i the corresponding Ex-
pected Feasibility Function evaluated at the local metamodel over a region
of interest L at the ith iteration of the active learning scheme. Let 1L[x],
x ∈ G , denote the indicator function corresponding to target region L. Given
the variance σ̃2(x), x ∈ G , a measure of local uncertainty along the target
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region L is [2]

effL
i :=

∫
L

σ̃2i (x)dx =

∫
G

σ̃2i (x)1L[x]dx , i = 1, . . . ,NL . (3)

While effG is defined over G based on design HG, effL
i is evaluated locally

over L based on design samples HL. At the ith iteration of the active learning
scheme, we have

x∗i = argmax
x∈L

σ̃2i (x) , i = 1, . . . ,NL . (4)

We further propose a local averaging metric to improve the performance of
the active learning scheme on nonlinear response surfaces by applying Kernel
Smoothing (i.e. Nearest Neighbor Smoother).

In a basic sense, pc metamodels do not provide a local measure of uncertainty.
To that end, a Bootstrap resampling scheme was successfully adopted. The
bootstrap resampling scheme was leveraged to obtain a measure of local
variability as determined by the uncertainty in the pc coefficients due to the
limited size of the experiment design [8]. For B bootstrap samples, equation (2)
was solved for each sample b = 1, . . . , B .

2.6 Error and convergence

For convergence assessment, two different error metrics are examined: the
well-known Mean Squared Error (mse), and another metric based on the
absolute relative error. For the latter, the convergence criteria is based on an
expression of the relative error of a statistical estimator following

εj =
EL[|q̂

L
j (ξ

L
NMC

) − y(ξLNMC
)|2]

EL[|q̂L
j (ξ

L
NMC

)|2]
, j = 1, . . . ,NL , (5)

where ξLNMC
denotes the Monte Carlo samples within the region of interest L,

y the corresponding observations, and q̂L
j the corresponding predictions from
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the local pc metamodel at the jth active learning step. For consistency, for
all the cases examined, even that of a global metamodel, we compute the
error metrics with respect to L.

3 Numerical applications and results

3.1 Quadratic polynomial

Consider a d-dimensional, second-order polynomial function f : Rd → R of
the form

f(ξ) = β0 + β
T
1ξ+ ξ

Tβ2ξ , (6)
where {ξ}di=1 are sampled from a Uniform distribution following {ξ}di=1 ∼

U(−2, 2) , β1 ∼ R
d×1 and β2 ∼ R

d×d represent a vector and a matrix
of coefficients, respectively. Consider a two-dimensional representation of
equation (6) with coefficients β0 = 0.803 , β1 =

[
0.527; 0.119

]
, and β2 =[

0.296, 0.301; 0.031, 0.336
]
. Let qΓ(ξ) denote a given qoi defined at the cor-

ner of the parameter space, that is (2, 2). For this validation problem, a total
of B = 100 bootstrap samples were used.

3.2 Turbulent flow over airfoil

Going beyond the mathematical function of equation (6), consider the problem
of turbulent flow over a symmetric airfoil. The model geometry corresponds
to a naca 0012 airfoil adapted from nasa [14]. The physics of the problem
involves turbulent, incompressible, subsonic, steady flow over the symmetric
airfoil. The computational fluid dynamics solver from the Openfoam [9]
suite was used. The airfoil boundary consists of an inlet on the left boundary,
wind tunnel walls at the top and bottom boundaries, and outlet along the
right boundary [14]. Let p, ν and u denote the pressure, kinematic viscosity,
and velocity, respectively. For an incompressible flow with spatially-uniform
viscosity, the Navier–Stokes equations take the form

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u , (7)
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∇ · u = 0 . (8)

The qoi in this airfoil problem is the dimensionless lift coefficient CL. Once the
velocity field u is computed, the lift coefficient qoi CL can be evaluated based
on the lift force, the wing area, fluid density and velocity. The random input
parameters of the 6D turbulent flow over airfoil problem consist of: angle
of attack α(◦) ∼ U(6.4, 9.6), density ρ ∼ U(0.95, 1.42) (kg/m3), viscosity ν ∼

U(1.2, 1.8)× 10−5 (m2/s), kinematic viscosity νt ∼ U(0.11, 0.17) (m2/s), far-
field velocity Ux ∼ U(8.3, 9.7) (m/s) and thickness ratio t/c ∼ U(0.11, 0.13) .

3.3 Results

Convergence results for the two-dimensional quadratic polynomial are pre-
sented in Figures 1 and 2. Figure 1(a) shows the true response function of
the quadratic polynomial, along with the corresponding space-filling design
used for training of the low-order (i.e., first order) global pc metamodel
approximation. Figure 1(b) shows the effG function across the domain at
the end of the first-order global pc approximation phase before any adaptive
sampling is conducted. In this problem, the region of interest L for the local
pc metamodel was selected in the neighborhood of the point that maximizes
the effG function from the initial global metamodel approximation, which
corresponds to the corner of the parameter space G, that is (ξ1, ξ2) = (2, 2) ,
as shown in Figure 1(c).

Figures 1(c–j) show the effL function and the corresponding local, pc-
based response surface approximation f̂ at four steps of the local metamodel
refinement following the active learning scheme.

Figure 2 shows the corresponding convergence results for the two-dimensional
quadratic polynomial during the local adaptive sampling phase. Figure 2(a)
shows the sampling scheme of the proposed methodology, including the space-
filling design used to train the global pc metamodel approximation HG,
the Monte Carlo samples ξLMC in the region of interest L, and the adaptive
samples HL at the end of the refinement-via-active-learning phase over the
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Figure 1: Local response function approximation for the two-dimensional
quadratic polynomial.
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Figure 2: Convergence for the two-dimensional quadratic polynomial.
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a b

Figure 3: Contours of (a) pressure p and (b) velocity u fields around the
airfoil.

local region L. Figure 2(b) shows the convergence of the qoi qΓ defined in
the corner of the parameter space near (ξ1, ξ2) = (2, 2) . Figure 2(c) shows
the convergence in terms of mse. Figure 2(d) shows the convergence in terms
mse for different sizes κ of the region of interest L. It is observed that a
smaller region of interest κ over which the local metamodel is trained results
in a lower level of error across all the active learning iterations.

Preliminary results for the problem of turbulent flow over the airfoil are
presented in Figure 3, which shows the contour of the pressure field p and
velocity u in the vicinity of the airfoil model at the final numerical step for
a random realization. Figure 4(a) shows the probability density function
of the qoi CL at the end of the active learning phase for the global pc
metamodel (κ = 1.0) and the local pc metamodel (κ = 0.2). A benchmark
solution corresponding to 2000Monte Carlo samples in the region of interest L
where the local metamodel was trained is also shown. It is observed that
at the end of the active training window investigated herein, the local pc
metamodel captures the true probabilistic solution (as approximated by the
Monte Carlo samples) better than the global pc metamodel. The statistical
estimator from the global pc metamodel shows more bias at the end of the
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a b

Figure 4: Convergence for the turbulent flow over airfoil problem (a) prob-
ability density function of qoi, (b) relative error in the active sampling
phase.

adaptive training window than the corresponding estimator from the local pc
metamodel. Figure 4(b) shows the relative error of the statistical estimator
for CL throughout the active learning phase. The estimator for CL based on
the local pc metamodel (κ = 0.2) consistently shows better performance than
the estimator based on a global pc metamodel (κ = 1.0).

4 Findings and conclusions
We addressed the problem of performing efficient local response surface
approximations with state-of-the-art pc techniques. Specifically, we employed
a basis adaptation scheme for dimension reduction at the local pc metamodel
level. Our proposed methodology is centered on a coupled global/local pc
metamodel scheme, followed by an active sampling of the local metamodel over
a target region of interest. We observed that the statistical estimators obtained
from a globally accurate solution show more bias throughout the adaptive
sampling phase than the corresponding estimator from a local metamodel.
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