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Abstract

The isolated scattering number is a parameter that measures the
vulnerability of networks. This measure is bounded by formulas de-
pending on the independence number. We present new bounds on the
isolated scattering number that can be calculated in polynomial time.
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1 Introduction
The isolated scattering number is a parameter that measures the vulnerability
of networks [1]. The parameter was defined by Wang et al. [8]. They deter-
mined the isolated scattering number (e.g., for cycles, bipartite graphs, and
the join of bipartite graphs) and they gave bounds on the isolated scattering
number depending on the independence number. They also established the
maximum and minimum isolated scattering numbers of trees with a given
order and a maximum degree. Furthermore, Li et al. [6, 5] proved that for
split and interval graphs the isolated scattering number can be computed in
polynomial time. They also determined the isolated scattering number for
some product graphs [6]. We present new bounds on the isolated scattering
number that can be calculated in polynomial time.

2 Preliminaries
A graph is a finite set V of elements called vertices together with a set E ⊆ [V]2

of elements called edges, where [V ]2 is the set of all two-element subsets of V .
Let G be a graph. Let u, v ∈ V(G) and {u, v} ∈ E(G) . The edge {u, v} is
said to be incident to the vertex u in G. The open neighborhood of a vertex
v ∈ V(G) is NG(v) = {u ∈ V(G) : {u, v} ∈ E(G)} , and its closed neighborhood
is the set NG[v] = NG(v) ∪ {v} . The degree of a vertex v, denoted by dG(v),
is the cardinality of its open neighborhood. A vertex of degree zero is referred
to as an isolated vertex and a vertex of degree one is a leaf. The minimum
degree of G is the smallest degree among the vertices of G and is denoted
by δ(G). If U is a subset of vertices of G, we write G[U] and G − U for
(U,E(G) ∩ [U]2) and G[V(G) \U] , respectively.

A independent vertex set in a graph G = (V, E) is a subset V ′ ⊆ V such that
no two vertices of V ′ are adjacent. The size of a largest independent vertex
set in a graph G is called the independence number of G and is denoted
by α(G). A graph G is complete if α(G) = 1 . A graph on more than one
vertex is called a nontrivial graph.
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A matching (respectively fractional matching) is a function f that assigns
to each edge of a graph G a number in W = {0, 1} (respectively W = [0, 1]),
such that for each vertex v, we have

∑
f(e) 6 1 , where the sum is taken

over all edges e incident to v (i.e., over all edges e that contain v). The
matching number µ(G) (respectively fractional matching number µf(G)) is
the supremum of

∑
e∈E(G) f(e) over all matchings (respectively fractional

matchings) f. A graph G is a Kőnig–Egerváry graph if α(G)+µ(G) = |V(G)| .
A graph G has a perfect matching (respectively fractional perfect matchings)
if µ(G) = |V(G)|/2 (respectively µf(G) = |V(G)|/2). Furthermore, we have

0 6 µ(G) 6 µf(G) 6
|V(G)|

2
(1)

for every graph G [7].

A cut set of a noncomplete graph G is a set S of vertices of G such that
G− S is disconnected, which mean that there is no path between some two
vertices in G−S . A cut set of minimum cardinality in G is called a minimum
cut set of G and this cardinality is called the connectivity of G and is denoted
by κ(G). The set of all cut sets of G is denoted by C(G). For S ⊆ V(G) ,
the value i(G− S) denotes the number of all isolated vertices in G− S . The
isolated scattering number of a noncomplete connected graph G is defined as

isc(G) = max
S∈C(G)

{i(G− S) − |S|} .

We assume that the isolated scattering number of a complete graph on
n vertices is equal to 2− n .

3 New upper bound on isolated scattering
number

In this section, we present an upper bound on the isolated scattering number
and we summarize classes of graphs for which isc(G) can be computed in
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polynomial time. We also establish the isolated scattering number of some
coronas of a graph and we posed some conjectures for such graphs.

Wang et al. [8] established the following lower and upper bounds on the
isolated scattering number.

Theorem 1 (Wang et al. [8]). Let G be a noncomplete connected graph. Then

2α(G) − |V(G)| 6 isc(G) 6 α(G) − κ(G) . (2)

We propose the following upper bound.

Theorem 2. Let G be a connected graph. Then

isc(G) 6 |V(G)|− 2µf(G) . (3)

Furthermore, the equality holds if G is a Kőnig–Egerváry graph.

Proof: Scheinerman and Ullman [7] showed that

µf(G) =
1

2

(
|V(G)|− max

S∈2V(G)
{i(G− S) − |S|}

)
,

where 2V(G) is the set of all subsets of V(G).

If G is trivial, that is, |V(G)| = 1 , then µf(G) = 0 and

isc(G) = 2− |V(G)| = 1 6 |V(G)|− 2µf(G) = 1 .

If G is a nontrivial complete graph, then

isc(G) = 2− |V(G)| 6 |V(G)|− 2 · (|V(G)|/2) = |V(G)|− 2µf(G) .

Now let G be a nontrivial, noncomplete connected graph. Since C(G) ⊆ 2V(G) ,
it follows that

isc(G) = max
S∈C(G)

{i(G− S) − |S|} 6 max
S∈2V(G)

{i(G− S) − |S|} = |V(G)|− 2µf(G) .
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From Theorem 1 and the first part of Theorem 2, the equality holds in (3)
if 2α(G) − |V(G)| = |V(G)| − 2µf(G) , that is, if µf(G) + α(G) = |V(G)| .
For every connected graph G, we have µ(G) 6 µf(G) 6 |V(G)| − α(G) [7].
Hence {G : µ(G) + α(G) = |V(G)|} ⊆ {G : µf(G) + α(G) = |V(G)|} and finally
isc(G) = |V(G)|− 2µf(G) for every Kőnig–Egerváry graph. ♠

It turns out that µf(G), used in (3), can be computed in O(|V | · |E|) time (i.e.,
polynomial time) in contrast to α(G) (used in (2)), which can be computed
in O(1.1996|V |) time [7, 9]. Furthermore, the next results show that the new
upper bound is better than the old one for some graphs.

Lemma 3. Let G be a graph. Then

|V(G)|− 2µf(G) 6 α(G) − κ(G) (4)

if and only if

(i) µf(G) 6
|V(G)|
2

− 1 , or

(ii) µf(G) =
|V(G)|
2

and κ(G) 6 α(G) , or

(iii) µf(G) =
|V(G)|−1

2
and κ(G) + 1 6 α(G) .

Furthermore, the inequality (4) is strict if (i) and µ(G) < µf(G) , or µf(G) =
|V(G)|/2 and κ(G) < α(G) , or µf(G) = (|V(G)|−1)/2 and κ(G)+1 < α(G)
holds.

Proof: We first prove that either (i), (ii) or (iii) implies (4). Let G be a
graph and µ(G) 6 |V(G)|/2− 1 . The following formula is a conclusion of the
Gallai–Edmonds Structure Theorem [2]:

|V(G)|− 2µ(G) 6 α(G) − κ(G) . (5)

Hence, from (1) we have |V(G)| − 2µf(G) 6 |V(G)| − 2µ(G) 6 α(G) −
κ(G) . Moreover, the measure µf(G) can take only values in {m/2 : m ∈
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Table 1: We summarize classes of graphs for which isc(G) can be computed
in polynomial time.

Class Reference Time
Bipartite graphs Wang et al. [8] (2011) O(

√
|V | · |E|)

Split graphs Li et al. [6] (2017) polynomial
Interval graphs Li et al. [5] (2017) O(|V |4)
Kőnig–Egerváry graphs this article (Theorem 2) O(|V | · |E|)

{0, 1, . . . , |V(G)|}} [7] and µ(G) > 0 (from (1)). Thus, if µ(G) < µf(G) , then

|V(G)|−2µf(G) 6 |V(G)|−2(µ(G)+1/2) < |V(G)|−2µ(G) 6 α(G)−κ(G).

Now let µf(G) = |V(G)|/2 and κ(G) 6 α(G) (respectively κ(G) < α(G)).
Then |V(G)| − 2µf(G) = 0 6 α(G) − κ(G) (respectively |V(G)| − 2µf(G) =
0 < α(G) − κ(G)). Now let µf(G) = (|V(G)| − 1)/2 and κ(G) + 1 6 α(G)
(respectively κ(G) + 1 < α(G)). Then |V(G)| − 2µf(G) = 1 6 α(G) − κ(G)
(respectively |V(G)|− 2µf(G) = 1 < α(G) − κ(G)).

We now prove that (4) implies (i), (ii) or (iii). Suppose that |V(G)|−2µf(G) 6
α(G) − κ(G) and (i), (ii) or (iii) does not hold. Let µf(G) > |V(G)|/2− 1 . If
µf(G) 6= |V(G)|/2 and κ(G)+1 > α(G) , then |V(G)|−2µf(G) = 1 . Summing
the last two formulas, we obtain |V(G)| − 2µf(G) > α(G) − κ(G) , and we
obtain a contradiction. The analysis of the remaining cases are similar and
left to the reader. ♠

In Table 1 we summarize classes of graphs for which isc(G) can be computed
in polynomial time. It is worth noting that the class of bipartite graphs
is contained in the class of Kőnig–Egerváry graphs [4]. In Table 2, we
experimentally compare the upper bounds from (2) and (3) for small connected
graphs.

At the end of this section, we determine the isolated scattering number of the
so-called corona of a graph, which can be interpreted as an expanding network.
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Table 2: We experimentally compare BOld(G) = α(G)−κ(G) and BNew(G) =
|V(G)|−2µf(G) for graphs in Gcn, that is, for all connected graphs on |V(G)| =
n vertices.

n |Gcn| BOld(G) > BNew(G) BNew(G) > BOld(G)
1 1 1 (100.0%) 0 (0.0%)
2 1 1 (100.0%) 0 (0.0%)
3 2 1 (50.0%) 1 (50.0%)
4 6 5 (83.33%) 1 (16.67%)
5 21 18 (85.71%) 3 (14.29%)
6 112 99 (88.39%) 13 (11.61%)
7 853 787 (92.26%) 66 (7.74%)
8 11 117 10 585 (95.21%) 532 (4.79%)
9 261 080 247 071 (94.63%) 14 009 (5.37%)

1− 9 273 193 258 568 (94.65%) 14 625 (5.35%)

Let G be a graph. An edge of G incident to a leaf is called a pendant edge. Let
C ⊆ V(G) . The generalized corona of a graph G, denoted by cor(G,C), is the
graph obtained from G by adding a pendant edge to each vertex v of G such
that v ∈ C . The corona of G, denoted by cor(G), is the graph cor(G,V(G)).
Let n be a positive integer. We write corn(G,C) to denote the generalized
corona nth power of G, that is, corn(G,C) = cor(corn−1(G,C), C) if n > 1
and cor1(G,C) = cor(G,C) . We assume that cor0(G,C) = G .

Let S be a cut set of G. Let S∗ be a cut set such that isc(G) = i(G−S∗)− |S∗|

and I (respectively I∗) be a set of all components which are trivial in G− S
(respectively G− S∗). Using Theorem 2, we establish the isolated scattering
number of some coronas.

Lemma 4. Let G be a noncomplete connected graph. Then

isc(cor(G,C)) > isc(G) + |C ∩ S∗|− |C ∩ I∗| . (6)

Furthermore, if C = V(G) , then the equality holds in (6).
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Proof: The set SC = S ∪ C is a cut set of cor(G,C). Moreover, SC =
S ∪ (C ∩ I) ∪ (C \ (I ∪ S)) since S and I are disjoint and therefore |SC| =
|S|+ |C ∩ I|+ |C \ (I ∪ S)| . On the other hand,

i(cor(G,C) − SC) > |I \ C|+ |C| = |I|+ |C ∩ S|+ |C \ (I ∪ S)| .

Thus

isc(cor(G,C)) > i(cor(G,C) − SC) − |SC| = |I|− |S|+ |C ∩ S|− |C ∩ I|

and finally

isc(cor(G,C)) > |I∗|− |S∗|+ |C∩ S∗|− |C∩ I∗| = isc(G) + |C∩ S∗|− |C∩ I∗| .

Let C = V(G) . Then, from (6),

isc(cor(G,V(G))) = isc(cor(G)) > isc(G) + |V(G) ∩ S∗|− |V(G) ∩ I∗|
= |I∗|− |S∗|+ |S∗|− |I∗| = 0 .

Furhermore, cor(G) has a perfect matching (i.e., all added pendant edges) and
µf(cor(G)) = µ(cor(G)) = |V(cor(G))|/2 (from (1)). Hence, from Theorem 2,
we get 0 = |V(cor(G))|− 2µf(cor(G)) > isc(cor(G)) > 0 . ♠

Corollary 5. Let G be a connected graph and n be a positive integer. Then

isc(corn(G)) = 0 .

Proof: From the proof of Lemma 4, we have isc(cor(G)) = 0 for a noncom-
plete connected graph G and 0 > isc(cor(G)) for a complete graph G. Let G
be a trivial graph. Then isc(cor(G)) = 2− |V(cor(G))| = 0 . Now let G be a
nontrivial complete graph. Take S = V(G) , then i(cor(G,V(G)) − S) − |S| =
|V(G)|− |V(G)| = 0 and hence isc(cor(G)) = isc(cor(G,V(G))) > 0 .
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Algorithm 4.1 Greedy Algorithm Min
1: function Min(G)
2: I← ∅
3: while V(G) 6= ∅ do
4: choose v ∈ V(G) with dG(v) = δ(G)
5: G← G−NG[v]
6: I← I ∪ {v}

7: return I

Since a corona of a connected graph is connected, we have isc(corn(G)) = 0
for a positive integer n. ♠

From the previous consideration, we conjecture that if n is a positive integer,
C ⊆ V(G) , and C 6= ∅ , then

isc(corn(G,C)) = |V(corn(G,C))|− 2µf(corn(G,C)) .

In addition, we pose the following question: Is isc(corn(G,C)) a monotonic
function with respect to n?

4 Greedy algorithm for isolated scattering
number
In this section, we present a greedy algorithm that determines a lower bound
of the isolated scattering number. We achieve this by a modification of
Algorithm 4.1, the so-called greedy algorithm Min [3]. The algorithm Min
recursively chooses a vertex with the smallest neighborhood (i.e., a vertex with
minimum degree) in a graph and then, it removes the closed neighborhood of
the vertex from that graph. A set produced by Min is an independent set.
The algorithm Min has complexity O(n2).

We perform a little modification of the Min Algorithm 4.1 and we obtain
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Algorithm 4.2 Greedy Algorithm Min-Isc
1: function Min-isc(G)
2: |I|← 0 , |S|← 0 , max← −∞
3: while V(G) 6= ∅ do
4: choose v ∈ V(G) with dG(v) = δ(G)
5: G← G−NG[v]
6: |S|← |S|+ |NG[v]|− 1
7: |I|← |I|+ 1
8: if |I|− |S| > max then
9: max = |I|− |S|

10: return max

Min-Isc Algorithm 4.2. The Min-Isc works properly since the union of open
neighborhoods of the v is a cut set. This algorithm has the same complexity
as Min, that is O(n2), since we only add several constant time operations.

We perform some preliminary experiments using Min-Isc Algorithm 4.2 and
we report them in Table 3. This table compares lower bounds computed from
Min-Isc with bounds computed from (2).
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