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On the probability of ventricular fibrillation
due to electric shock
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Abstract

When exposed to a specified electrical shock, the probability that a
randomly chosen individual will undergo fatal ventricular fibrillation
can be regarded as a function of random variation in the human
population along two dimensions. The first dimension is the individual’s
body impedance characteristic: for this, we introduce a new two-
parameter model that improves on the simpler one-parameter model
used in previous work. The second dimension is the individual’s current
tolerance: we codify some curves used in previous practice. We also
consider methods of solving the resulting shock circuit and show that
the fixed-point iteration method can give incorrect results.
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1 Introduction

The statistical modelling of electrical shock hazards is both decades old (Wang
et al. 1984) and still of current interest (Dimopoulos et al. 2012; Griffiths and
Woodhouse 2017). While there are several possible approaches, there is general
agreement that a key concept is that of the ventricular fibrillation probability.
This is the probability that an individual randomly chosen from the popula-
tion will undergo ventricular fibrillation leading to death when subjected to
electrical shock of a specified kind. It is generally accepted that ventricular
fibrillation is the principal cause of fatalities due to electrical shock.

The fibrillation-probability problem decomposes into two parts. Firstly, fibril-
lation is triggered by an electrical current passing through the heart, but the
threshold amount of current required to cause fibrillation (called the current
tolerance) varies among individuals, and so a statistical approach is called for.
Secondly, the amount of current that flows through the body depends on the
body impedance, which varies nonlinearly with the voltage across the body
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(called the touch voltage) and also among individuals. We must thus consider
random variation in the human population under consideration along two
dimensions: current tolerance and body impedance. The statistical problem is
then one of estimating a bivariate probability distribution and the fibrillation
probability Pfib a bivariate expectation.

This two-variable paradigm, although very useful, is complicated somewhat
by the fact that body impedance is a function (of the touch voltage) rather
than a single variable. The simplest body impedance models remove this
complication by modelling body impedance functions as a one-parameter
family—but this introduces some undesirable non-monotone behaviour. One
of this paper’s principal original contributions is a new two-parameter model
that preserves monotonicity with voltage; this is the subject of Section 3.

A further complication is that for engineering calculations, the fibrillation
probability is rarely interesting in itself: what the engineer wants to know is
whether a particular piece of equipment will cause fatalities by electrocution
at an acceptably low rate. This requires an additional model of the rate λs
(per unit time) at which shocks—opportunities for current to flow through
the bodies of unfortunate humans—will occur. The probability that a shock
results in a fatality is identified with the fibrillation probability. The long-run
average rate of fatalities is then λsPfib per unit time. This wider view of the
problem is developed in Sections 4 to 6.

The Australian industry-standard (but closed-source) software known as
Argon performs calculations similar to ours. This paper examines the standard
underpinning the Argon software suite and replicates, evaluates, and improves
on the approach adopted therein.

2 The rate of shocks

The occurrence of shocks is modelled in the following simple way. A given
piece of equipment is assumed to experience faults from time to time at
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Figure 1: The fault and contact processes.
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random. We model these faults as a Poisson point process in time with a
given rate of λf faults per unit time. Every fault is assumed to have a given
duration τf. Without loss of generality, we suppose that an event of the
Poisson process at time t marks the beginning of the corresponding fault
period, so that the fault lasts for the time interval [t, t+τf] (Figure 1). During
a fault, some surfaces that are accessible to humans become electrically live.

Actual contact between humans and potentially dangerous surfaces occurs
from time to time in a way that we also model as a Poisson process, with
rate λc contacts per unit time. Every contact is assumed to have a given
duration τc. Again without loss of generality, we suppose that an event of the
Poisson process at time s marks the beginning of the corresponding contact
period, so that the contact exists during the time interval [s, s + τc]. The
fault and contact processes are assumed independent.

A shock occurs when a fault overlaps in time with a contact (a “coincidence”).
The rate of coincidences, per unit time, is derived in the following way.
Suppose a fault exists during the time interval [t, t+ τf]. A contact existing
during the time interval [s, s+τc] creates a coincidence—that is, the intervals
overlap—if, and only if, t−τc < s < t+τf . The fault is thus associated with
a time interval [t−τc, t+τf] during which the initiation of any contact causes
a coincidence. Since the length of this interval is τf + τc , the number of
coincidences arising from it has a Poisson distribution with mean λc(τf + τc).

Now consider a time interval [0, T ], during which faults are initiated at times
T1, . . . , TN. By assumption, N has a Poisson distribution with mean λfT .
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The total number of coincidences is X =
∑N
i=1 Xi , where Xi is the num-

ber of coincidences associated with the fault that exists during the time
interval [Ti, Ti + τf]. Hence,

E[X] = E

[
N∑
i=1

Xi

]
= E[N]E[X1] = λfT · λc(τf + τc).

Therefore, the rate of coincidences (or shocks) is λs = λfλc(τf + τc) per unit
time.

The preceding analysis takes no account of the possibility of faults coinciding
with each other; similarly contacts. Should two faults overlap in time, they
are counted as separate events, and any coincidences they give rise to are
counted separately. Similarly, the exceptionally unlucky individual whose
contact period overlaps with two distinct faults (which may or may not overlap
with each other) is considered to have experienced two coincidences and been
exposed to two shock hazards. While the realism of this neglect may be
problematic, the effect on the results should be small, provided that faults
and contacts are both rare events.

This analysis differs somewhat from a slightly different approach by Pawlik,
Griffiths, and Woodhouse (2018), which involves a detailed calculation of the
probability of at least one coincidence occurring during a given time interval.
The analysis in this paper instead tells us the expected number of coincidences
during the time interval. The two values will be very similar if coincidences
are rare enough to make it very unlikely that two or more occur during the
interval. However, the latter approach is better suited to our purposes, as the
expected number of coincidences can be multiplied by a fibrillation probability
to obtain the expected number of fatalities.
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Figure 2: (top) body
impedance data
(International
Electrotechnical
Commission 2018);
and (bottom) a
simple lognormal fit.
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Table 1: Body impedance statistics at various voltages (hand-to-hand, dry,
large contact area, AC 50–60Hz) (International Electrotechnical Commission
2018).

Impedance (Ω) One-parameter Two-parameter
Voltage 5th 50th model model

(V) percentile percentile mean(log) sd(log) β

25 1750 3250 8.086 0.376 1.000
50 1375 2500 7.824 0.363 0.735
75 1125 2000 7.601 0.350 0.523
100 990 1725 7.453 0.338 0.413
125 900 1550 7.346 0.330 0.339
150 850 1400 7.244 0.303 0.280
175 825 1325 7.189 0.288 0.250
200 800 1275 7.151 0.283 0.229
225 775 1225 7.111 0.278 0.209
400 700 950 6.856 0.186 0.106
500 625 850 6.745 0.187 0.067
700 575 775 6.653 0.181 0.040
1000 575 775 6.653 0.181 0.040

3 Modelling the human body impedance

The starting point for this section of the paper is available data on human body
impedance published by International Electrotechnical Commission (2018)
and AS/NZS 60479.1 (2010). Estimates are tabulated of the 5th, 50th, and
95th percentiles of the impedance at a finite set of voltages ranging from 25V
to 1000V; the first two of these quantiles are reproduced in Table 1. Similar
tables are available for other current paths (e.g., left-hand-to-right-foot, or
foot-to-foot) and for contact made with wet or saltwater-wet skin. The data
are illustrated in Figure 2 (left).

The body impedance is principally resistive. Although the skin exhibits some
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capacitive behaviour, this is relatively small (International Electrotechnical
Commission 2018) and we neglect it: references in this paper to “impedance”
are to resistance only.

A simple modelling approach (Griffiths and Woodhouse 2017) is to fit a
lognormal distribution to the given quantiles for each given voltage. This
choice of distribution is suggested by data (Biegelmeier 1979); it also has the
desirable feature that it guarantees non-negativity. The lognormal distribution,
which has two parameters, is fit exactly to the given values for the 5th and
50th percentiles. The 95th percentile value is regarded as being of less interest
for present purposes—it is the individuals with low body impedance who
carry the highest currents and so are most likely to perish from electric shock—
although it is reproduced quite well by the fitted lognormal distributions.
Fitted parameters (mean and standard deviation of the log(impedance)) are
recorded alongside the data in Table 1.

To model the body impedance characteristics of individuals, we need a further
assumption regarding the correlation between impedances at different voltages.
The simplest thing is to posit a perfect correlation: each individual’s body
impedance coincides with the same population quantile at all voltages. So, for
example, an individual whose body impedance at 25V happens to match the
population median has a body impedance at 1000V matching the population
median for that statistic also. The body impedance functions of the human
population are thus modelled as a one-parameter family: any individual’s
body impedance is completely specified, as a function of voltage, by the
population quantile with which the individual coincides.

This simple lognormal model is used to extrapolate the impedance distribu-
tions to lower quantiles, as shown in Figure 2 (right). Doing so reveals the
main flaw in this approach: the impedance is no longer a monotone function
of voltage for the most extreme quantiles. This is unappealing because we
expect on physical grounds that the impedance characteristic of any individual
is monotone decreasing in voltage; therefore, any quantile of the population
should be monotone decreasing also.
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It is readily apparent why the simple lognormal model fails in this way: the
impedance (or rather, its logarithm) at low voltages has greater variance than
at high voltages. Suppose we have voltages V1 < V2 with the log(impedance)
at voltage Vi (i = 1, 2) having mean µi and variance σ2i . Then the α-quantile
of the log(impedance) at Vi is µi + σiqα , where qα is the α-quantile of
the standard normal distribution. If µ1 > µ2 (as we expect), but also
σ1 > σ2 , then for qα < µ2−µ1

σ1−σ2
we have µ1 + σ1qα < µ2 + σ2qα . That

is, for sufficiently extreme quantiles in the left tail of the distributions, the
low-voltage impedance falls below the high-voltage impedance.

The physical basis for the voltage-dependence of the body impedance lies in
the behaviour of the skin, which presents a relatively large impedance to low
voltages. Still, it breaks down for voltages on the order of a few hundred volts.
This points the way towards an improved model: the skin and the subdermal
tissue are treated separately:

Zb(V) = Zskin β(V) + Zsubd. (1)

That is, the body impedance function of any individual is the sum of two
terms, representing skin and subdermal impedances in series. Only the skin
impedance is voltage-dependent. The body impedance functions of the human
population are thus modelled as a two-parameter family: each individual has
their own values for the two parameters Zskin and Zsubd whereas β(V) is a
fixed function common to all individuals. We assume that Zskin and Zsubd,
which we must now regard as random variables, are independent and both
log-normally distributed.

The impedance curves of two different individuals may cross, something
not possible with the simple lognormal model. The impedance function of
any individual is guaranteed to be decreasing with voltage (provided the
function β is decreasing).

Another point in favour of the model (1) is that it has fewer parameters than
the simpler lognormal model. Suppose the model must predict the impedance
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at voltages V1, . . . , Vn. The simple lognormal model requires 2n parameters:
a mean and variance for each voltage. But (1) requires only n+ 3 parameters:
two each for the distributions of Zskin and Zsubd, and n − 1 for the values
of β(V2), . . . , β(Vn). (Without loss of generality, we take β(V1) = 1 for the
smallest voltage V1.) We denote this parameter vector by θ.

We again fit the model (1) to the tabulated 5th and 50th percentile impedance
values at the voltages V1, . . . , Vn. These quantiles, which we denote q15, . . . , qn5
and q150, . . . , qn50, are themselves summary statistics of an underlying sample,
which is inaccessible to us. (We do not even know the sample size, a short-
coming with implications we return to in the final paragraph of this section).
Our knowledge of the sample data at voltage Vi is limited to the information
that 5% of the values are less than qi5, 45% are between qi5 and qi50, and
50% exceed qi50.

We take a maximum-likelihood approach to the fitting. Assuming a model
that gives a cumulative distribution function Fi(·; θ) for the impedance at Vi,
the likelihood of the observed values at this voltage is

Fi(q
i
5; θ)

0.05N ·
[
Fi(q

i
50; θ) − Fi(q

i
5; θ)

]0.45N · [1− Fi(qi50; θ)]0.5N ,
where N is the unknown sample size. Hence, the log-likelihood function for
the full dataset is

θ 7→N
n∑
i=1

{
0.05 log Fi(q

i
5; θ) + 0.45 log(Fi(q

i
50; θ) − Fi(q

i
5; θ))

+ 0.5 log
[
1− Fi(q

i
50; θ)

]}
. (2)

In summing log-likelihoods across voltages we make the implicit assumption
of independence between voltages. This assumption is problematic because
the original data were likely obtained by making measurements at several
voltages on each test subject. It is not necessary to know the value of N to
maximize (2) over θ.
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In the particular case of interest here, we have n = 13 different voltages. The
parameter vector θ is of size 16:

θ = (µskin, σskin, µsubd, σsubd, β2, . . . , βn)

where µskin and σskin are the mean and standard deviation of logZskin; similarly
µsubd, σsubd; and β2, . . . , βn are the values of β(V2), . . . , β(Vn).

In carrying out this nonlinear optimization, we have the difficulty that for
a given θ, the distribution Fi(·; θ) is that of the sum of two independent
lognormally-distributed random variables, and so there is no closed-form
analytical expression for Fi(q; θ) as a function of θ. We overcome this
problem by Monte Carlo sampling, in the following way. First, draw large
independent random samples (Wskin

k )Mk=1 and (Wsubd
k )Mk=1 according to the

standard normal distribution; we used M = 105. These samples, once drawn,
remain fixed throughout the fitting. Then for any θ, (Zki)Mk=1 defined by

Zki = exp
(
µskin + σskinW

skin
k

)
βi + exp

(
µsubd + σskinW

subd
k

)
is an independent random sample drawn according to the distribution of
body impedances at voltage Vi (i = 1, . . . , n) corresponding to θ. We use the
proportion of values in this sample that are less than q as an approximation
to F(q; θ).

Fitted values of the β(Vi) parameters are recorded alongside the data in
Table 1. The corresponding fitted distributional parameters for log(Zskin)
are µskin = 7.84 and σskin = 0.62; those for log(Zsubd) are µsubd = 6.49

and σsubd = 0.19. Figure 3 illustrates the model obtained. A good fit is
achieved to the required 5th and 50th percentile values. The extrapolated
1st percentile and 0.1 percentile curves are monotone decreasing as expected,
and for high voltages are in good agreement with those extrapolated by the
simple lognormal model. (This, too, is expected since the skin term becomes
negligible at high voltages). The models differ most at around 200V. Figure 3
(right) shows that it is not only possible but quite common for the impedance
characteristics of different individuals to cross: one individual may have
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Figure 3: The
two-parameter model of
body impedance:
(top) percentiles, with
raw data plotted as
points and the curves of
Figure 2 reproduced as
dotted lines; and
(bottom) 50 randomly
sampled individuals.
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relatively high-impedance skin and a low-impedance internal body, whereas
another has low-impedance skin and a high-impedance internal body.

It would be desirable to quantify the uncertainty in the estimates of the model
parameters for both the simple lognormal model and our two-parameter
model. Unfortunately, the nature of the available data makes this impossible.
The parameter uncertainties depend on the uncertainties in the published
quantiles in Table 1, which themselves depend mainly on the size of the
underlying sample. But the International Electrotechnical Commission (2018)
does not make this information available.

4 Solving the shock circuit

In this section we consider the shock circuit comprising a voltage source
connected across two impedances in series, one of which is a human body.
The other impedance—which may represent footwear, gloves, soil, paving
material, etc.—is assumed (as with the body impedance) to be purely resistive
and to have a fixed value Zs. The source voltage (also known as the prospective
touch voltage) is denoted Vs.

As discussed in Section 3, the impedance of the human body is voltage-
dependent; we denote it Zb(V) at voltage V , and define this quantity for all
voltages V by linear interpolation between the tabulated voltages V1, . . . , Vn.
For completeness, we define Zb(V) = Zb(V1) for 0 6 V < V1 and Zb(V) =
Zb(Vn) for V > Vn . (The first of these approximations has poor accuracy,
but this is not a concern as the very lowest voltages and highest impedances
are not hazardous in any case.)

The voltage across the body (known as the touch voltage) Vt then satisfies

Vt =
Zb(Vt)

Zs + Zb(Vt)
Vs (3)
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or equivalently

Zb(Vt) −
ZsVt

Vs − Vt
= 0. (4)

Provided Zb is a decreasing function, there exists a unique solution to (4) with
0 < Vt < Vs , since the left-hand-side of (4) is a strictly decreasing continuous
function of Vt on that interval which takes positive values as Vt → 0 and
negative values as Vt → Vs .

Section 3 shows that the simple lognormal model may have some quantiles
which are not decreasing functions of the voltage, creating the mathematical
possibility of multiple solutions to (4). However, such cases are found to exist
only for very extreme quantiles corresponding to a fraction circa 10−20 (or
less) of the population, and we do not consider them further.

Equation (3) could be solved by fixed-point iteration (Griffiths and Woodhouse
2017) on the function f(v) = VsZb(v)/[Zs + Zb(v)]. That is, a sequence
(vk)

∞
k=0 is defined by letting v0 = Vs and vk = f(vk−1) for k = 1, 2, . . . . In

cases of practical interest, this sequence always seems to converge to the
solution of the equation. However, fixed-point iteration is well-known to
be a method that works in some situations but not in others, and in some
(relatively rare) cases this approach to solving (3) may fail.

Example Let Zs = 10 kΩ and Vs = 3200V, and let the exposed individual
have a body impedance coinciding with the 98th percentile of the population
according to the simple lognormal model given in Section 3. According to
this model, the body impedances are 2170Ω, 1391Ω, and 1248Ω at 225V,
400V, and 500V, respectively. Solving (3) reveals the touch voltage to be
Vt = 395.59V, with the corresponding body impedance being 1410.6Ω and
body current 280mA. However, if the above fixed-point iteration is initiated
from 395V (or any close approximation of the solution) it will not converge
to the correct value, but will eventually alternate between values 390.26V
and 401.4V, which constitute a two-cycle for f.
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Figure 4: Human current tolerance diagram, reproduced from the Interna-
tional Electrotechnical Commission (2018).

In general, a necessary condition for the successful convergence of the fixed-
point iteration is |f ′(Vt)| 6 1 (Burden and Faires 2001; Hoffman 2001). We
have

f ′(v) =
VsZsZ

′
b(v)

(Zs + Zb(v))2
,

which for the above numerical example gives f ′(Vt) ≈ −1.09.

An alternative and more reliable method of solving (3) is a simple bisec-
tion search for the touch voltage Vt satisfying (4); this method is used for
calculations in this paper.
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5 The human current tolerance

The foregoing sections have been concerned with models predicting electrical
current through the body: how much current flows, and how often? In this
section we turn our attention to the other key variable in the fibrillation-
probability problem: the ability of individuals to tolerate current through the
body without triggering ventricular fibrillation and death.

As with most published work in this area, we begin with the diagram in
Figure 4 (International Electrotechnical Commission 2018; Biegelmeier 1987;
Biegelmeier 1960). The current tolerance depends on the duration of the
exposure: short electric shocks are less harmful than prolonged ones. Of
interest are the three S-curves in Figure 4, which represent thresholds at
which ventricular fibrillation occurs with probabilities of 5%, 50%, and 95%.

We do not propose, in this paper, to modify or re-model these curves, but
only to render them into a numerical form suitable for computation. Two
curve-fitting approaches were trialled: one a generalized logistic function fitted
with ceiling, floor and growth rate estimated by minimizing the root mean
squared error, the other a polynomial spline. Comparison of the residuals
suggests that the spline approach is favoured over the logistic estimate (and
results did not seem to vary much on a substantive basis when the number of
steps chosen for fitting the spline were increased from 13 to 113).

A univariate piecewise polynomial (pp) is specified by its break sequence
breaks and the coefficient array coefs of the local power form of its poly-
nomial pieces. The ppform of a polynomial spline of order k provides a
description in the terms of the break points ψ1, ψ2, ψ3, . . . , ψl + 1 and the
local polynomial coefficients Cji of its l pieces:

Pj(x) =

k∑
i=1

(x−ψj)
k−iCji , j = 1, . . . , l . (5)

We use a cubic spline: the order is k = 4. The break sequence is assumed
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Figure 5: Spline curve fitted to the current-tolerance thresholds.
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to be strictly increasing with l polynomial pieces that make up the ppform.
The resulting interpolation is depicted in Figure 5.

The current tolerance, or threshold of ventricular fibrillation, varies among
individuals, and so must be regarded as a random variable. Unlike the body
impedance, it is a univariate random quantity. (As noted above, the current
tolerance is also a function of the duration of exposure, but in most engineering
calculations, the exposure time is regarded as a known constant.)

We regard each horizontal line in Figure 4 as a representation of the current
tolerance distribution for a given duration. The points where the three S-
curves in the figure cross the chosen horizontal line are the distribution’s 5th,
50th, and 95th percentiles. No other information about the distribution is
encoded in the figure.

Some further information about the distribution is available from animal
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experiments (Biegelmeier and Lee 1980). A lognormal distribution has ap-
proximately the right shape, although it is not the only possibility.1 This
paper will use a lognormal distribution for current tolerance.

The curves in Figure 4, and their spline representations, give only the 5th, 50th,
and 95th percentiles of the distribution. We take the straightforward approach
of fitting a two-parameter lognormal distribution exactly to the required 5th
and 50th percentiles of the distribution; it is then possible to calculate any
desired quantile. Alternatively (and equivalently), it is possible to calculate
the probability of fibrillation for a given current and exposure time.

As a numerical example, consider shocks whose duration is 1 second. According
to Figure 4 (or more precisely, the spline approximations to the curves thereon),
the 5th and 50th percentiles of the current tolerance at this duration are 50mA
and 78mA respectively. The lognormal distribution with these quantiles gives
the log(current) a mean value of log(78) ≈ 4.36 and standard deviation 0.27.
The 95th percentile of this distribution is 122mA (slightly below the spline-
approximant value of 131mA), and the fibrillation probability for a 100mA
shock is predicted to be 0.82.

6 The probability of ventricular fibrillation

A fundamental modelling assumption is that the body impedance curve and
the current tolerance are statistically independent. This assumption seems
to be made everywhere Energy Networks Association 2010, e.g. where both
variables are considered, although it is far from clear that it is justified.
For example, some association is found between an animal’s body weight
and its current tolerance (Ferris et al. 1936); it is easily imaginable that an
individual’s body weight or size will also affect the body impedance.

1Others include a three-parameter variant of the lognormal distribution (King and
Coggan 2016), the normal distribution, or log-triangular distributions (Griffiths, Woodhouse,
and Palmer 2013).
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Suppose that the body impedance curve and the current tolerance are indepen-
dent random quantities. On this assumption, it is in principle straightforward
to calculate the probability of ventricular fibrillation resulting from a given
shock. Denote by I the corresponding (random) body current: this depends
only on the body impedance curve. Adopt a lognormal model for the cur-
rent tolerance as suggested in Section 5, with log(current tolerance) having
mean µf and standard deviation σf. Then, for a given I, the fibrillation
probability

Pr(fibrillation | I) = Φ

(
log I− µf

σf

)
,

where Φ denotes the standard normal cumulative distribution function. The
unconditional fibrillation probability

Pr(fibrillation) = E [Pr(fibrillation | I)] = E

[
Φ

(
log I− µf

σf

)]
. (6)

Since I is a function of the body impedance curve only, we have an expectation
of a function of this random curve.

For the simple lognormal model of body impedance, a random individual’s
body impedance curve is drawn from a one-parameter family: the sole pa-
rameter p (with 0 < p < 1) specifies that the body impedance curve of the
individual in question matches the population’s p-quantile curve. The result-
ing current in the shock circuit is then a function of p; we denote it g1(p), so
that (6) becomes

Pr(fibrillation) =
∫1
0

Φ

(
log g1(p) − µf

σf

)
dp . (7)

That is, the required probability is obtained as a univariate integral. Even
though the integrand is somewhat complicated—to evaluate it for a single
value of p requires solving the shock circuit as described in Section 4—it
is a simple matter to numerically evaluate such an integral (Griffiths and
Woodhouse 2017).
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For our two-parameter model of body impedance, a random individual’s body
impedance curve is given by (1); the parameters Zskin and Zsubd appearing
there are independent lognormally-distributed random variables. The resulting
current is a function of these two parameters only: I = g2(Zskin, Zsubd). Hence

Pr(fibrillation) = E
[
Φ

(
log g2(Zskin, Zsubd) − µf

σf

)]
or equivalently

Pr(fibrillation) = E
[
Φ

(
log g2(e

µskin+σskinW1 , eµsubd+σsubdW2) − µf
σf

)]
,

where W1 and W2 are independent standard normal random variables. It
would be possible to express this expectation as a double integral, analogously
to (7), but we do not pursue that approach here. Instead, we content ourselves
with simple Monte Carlo simulations to evaluate the fibrillation probabilities.

Example A given item of equipment produces shocks by fault-contact
coincidences at rate λs = 0.01 per annum—that is, the shocks are 1-in-100
year events. All the shocks are assumed to have duration 500ms and protective
series impedance Zs = 1 kΩ. What is the maximum prospective touch voltage
consistent with a fatality rate of 10−6 per annum?

The given rates imply that the fibrillation probability must be Pfib = 10−4.
Figure 4 indicates that for shocks of this duration, the current tolerance
is 200mA at the population median and half of this value at the 5th per-
centile; a lognormal model of current tolerance thus has mean (log cur-
rent) equal to µf = log(200) and standard deviation (log current) equal to
σf = log(0.5)/Φ−1(0.05) = 0.421 . Using Monte Carlo samples of n = 105

body impedance curves suggests that the required prospective touch volt-
age may be taken to be 110V; for this value of Vs, the estimated Pfib is
(93.1± 1.3)× 10−6 for the simple lognormal model of body impedance, and
(96.3± 1.2)× 10−6 for the two-parameter model.
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7 Conclusion

As in earlier work, this paper decomposes the fibrillation-probability problem
into two parts: individuals are assumed to vary both in their current tolerance
and their body impedance characteristic. This decomposition reduces the
problem to one of calculating a bivariate expectation. Body impedance is
the more complicated variable, and for this we devise a new two-parameter
model that may be more realistic than the simpler model previously used.

We also follow the approach of explicitly allowing for a series impedance in the
circuit (Griffiths and Woodhouse 2017). The resulting circuit is not always
solved correctly by fixed-point iteration, but a simple bisection method gives
correct solutions.

One aspect of the problem not addressed in this paper is the nature of the
series impedance discussed in Section 4. The Argon software models this
impedance explicitly in terms of types of footwear and paving surfaces. (For
shocks other than via the feet, no series impedance appears to be allowed for.)
The reduction of the geometry and materials of a given situation to a single
series impedance value requires separate models beyond those we consider.
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