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Abstract

We use orthogonal and biorthogonal projections to post-process the
gradient of the finite element solution produced by a nonconforming
finite element approach. This leads to a better approximation property
of the recovered gradient. We use an L2-projection, where the trial
and test spaces are different but form a biorthogonal system. This
leads to an efficient numerical approach. We also modify our projection
by applying the boundary modification method to obtain a higher
order approximation on the boundary patch. Numerical examples are
presented to demonstrate the efficiency and optimality of the approach.
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1 Introduction
Gradient recovery is a technique of post-processing a finite element solution
to achieve a better accuracy than the standard gradient. There are many
methods proposed and implemented to post-process the gradient of a finite
element solution. The majority of the existing methods, such as those based on
local or global least square fittings [13, 6, 10, 12], global or local projections [1,
5], or averaging methods [8, 2], assume that the elements used are conforming.
There are only a few publications dealing with the gradient recovery for
nonconforming finite elements [4]. We introduce a technique of recovering
the gradient of a nonconforming finite element solution using a biorthogonal
system proposed earlier for the conforming finite element method [7]. In this
article, we use two nonconforming finite element methods. One of them is the
standard nonconforming triangular element method introduced by Crouzeix
and Raviart [3] and the other one is the nonconforming quadrilateral element
introduced by Rannacher and Turek [11].

Ilyas, Lamichhane and Meylan [7] introduced a new type of gradient recovery
method to the standard conforming linear triangular element, where the
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gradient of the finite element solution is projected by using a biorthogonal
system. Due to the use of the biorthogonal system, the projection matrix is
diagonal and hence the computation is very efficient. Moreover, they proposed
an efficient boundary modification technique to improve the accuracy of the
recovered gradient on the boundary patch. The boundary modification was
inspired by a technique used in the mortar finite element [9].

In this article, we extend the idea of Ilyas, Lamichhane and Meylan [7] to the
triangular and quadrilateral nonconforming elements. Since the triangular
Crouzeix–Raviart element basis functions are orthogonal in the L2-norm, we
do not need to construct a biorthogonal system in this case. However, the
orthogonality does not hold for the quadrilateral nonconforming finite element
basis function. In this case, we construct the biorthogonal basis functions to
achieve the efficiency of the L2-projection.

Let our domain Ω ⊂ R2 be bounded and have polygonal boundary ∂Ω.
Let Th be a quasi-uniform partition of Ω into triangles or quadrilaterals. We
define Nv to be set of vertices of the partition Th, and Nm to be the set of
midpoints of edges on the partition Th. We use standard Sobolev spaces:

L2 (Ω) =

{
f :

∫
Ω

|f(x)|2 dx <∞} ,
H1 (Ω) =

{
f : f ∈ L2 (Ω) ,∇f ∈

[
L2 (Ω)

]2}
.

With the triangular elements we denote the conforming standard (st) ele-
ment space and the nonconforming (nc) Crouzeix–Raviart element spaces as,
respectively,

Vst
h =

{
v ∈ C0 (Ω) : v|T ∈ P1 (T) , T ∈ Th

}
,

Vnc
h =

{
v ∈ L2 (Ω) : v|T ∈ P1 (T) , T ∈ Th, v is continuous at all p ∈ Nm

}
.

With the quadrilateral elements we denote the conforming standard element
space and the nonconforming Rannacher–Turek element space as, respectively,

Vst
h =

{
vh ∈ C0 (Ω) : vh|T = v̂h ◦ F

−1
T , v̂h|T̂ ∈ span {1, x, y, xy} , T ∈ Th

}
,
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Vnc
h =

{
v ∈ L2 (Ω) : vh|T = v̂h ◦ F

−1
T , v̂h|T̂ ∈ span {1, x, y, x2 − y2} ,

T ∈ Th , vh continuous at Nm} ,

where FT : (0, 1)2 → T is an element map, and T̂ = (0, 1)2 .

2 New gradient recovery method

2.1 Biorthogonal projection

Let {φ1, . . . , φN} and {µ1, . . . , µN} be two sets of functions. We say that these
two sets are biorthogonal if they satisfy the biorthogonality condition∫

Ω

φiµj dx = ciδi,j , ci 6= 0 , for all i, j ∈ {1, . . . ,N} . (1)

For the gradient recovery methods, we require a projection operator. In this
article we use two projection operators, Pst and Pnc, which are orthogonal or
biorthogonal projections to project ∇̃uh onto [Vst

h ]2 and [Vnc
h ]2, respectively.

Here ∇̃ =
(
∂̃/∂̃x1, ∂̃/∂̃x2

)
is the piecewise gradient operator where partial

derivatives are applied element-wise. If we have a triangular mesh and
Crouzeix–Raviart finite elements, then the projection Pnc is orthogonal, as
Crouzeix–Raviart finite element basis functions are orthogonal with respect
to the L2-inner product [3]. Otherwise, both Pst and Pnc are biorthogonal
projections.

Now we briefly describe a biorthogonal projection. Let P be a biorthogonal
projection of u ∈ L2(Ω) onto Vh. Let {φ1, . . . , φN} be a set of basis func-
tions of Vh and {µ1, . . . , µN} be another set of basis functions satisfying the
biorthogonality relationship (1). Then Pu ∈ Vh is defined by∫

Ω

(Pu)µj dx =

∫
Ω

uµj dx , 1 6 j 6 N . (2)
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Since Pu ∈ Vh we write

Pu =

N∑
i=1

uiφi ,

and thus (2) can be written as

N∑
i=1

ui

∫
Ω

φiµj dx =

∫
Ω

uµj dx , 1 6 j 6 N . (3)

Since the Gram matrix corresponding to the inner product
∫
Ω
φiµj dx is

diagonal, the solution of the above system of equations is very efficient.
Here, P projects ∇̃uh onto [Vh]

2 as P
(
∇̃u
)
=
(
P
(
∂̃u/∂̃x

)
,P
(
∂̃u/∂̃y

))
.

Since the Crouzeix–Raviart basis functions are L2-orthogonal, we do not need
to construct a biorthogonal system in this case. However, the Rannacher–
Turek basis functions are not orthogonal and we need to construct a set of basis
functions which form a biorthogonal system. We construct the basis functions
in the reference element T̂ = (0, 1)

2 as follows. Let φ̂1, φ̂2, φ̂3 and φ̂4 be the
four basis functions associated with the four mid-points of the edges (1/2, 0),
(1, 1/2), (1/2, 1) and (0, 1/2), respectively. Then,

φ̂1 = −x2 + x+ y2 − 2 y+ 3
4
, φ̂2 = x

2 − y2 + y− 1
4
,

φ̂3 = −x2 + x+ y2 − 1
4
, φ̂4 = x

2 − 2 x− y2 + y+ 3
4
.

We construct the following local basis functions which form a biorthogonal
system with the standard local Rannacher–Turek basis functions:

µ̂1 = 4−
57
2
y+ 45

2

(
x− x2 + y2

)
, µ̂2 = −2− 33

2
x+ 45

2

(
y+ x2 − y2

)
,

µ̂3 = −2− 33
2
y+ 45

2

(
x− x2 + y2

)
, µ̂4 = 4−

57
2
x+ 45

2

(
y+ x2 − y2

)
.

2.2 Boundary modification

The boundary modification follows the same procedure as Ilyas, Lamichhane
and Meylan [7], with only minor changes made to accommodate the change in
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element type and shape. First we define the set of nodes on the boundary Nout

and interior nodes Nin as

Nout = {p : p ∈ N, p ∈ ∂Ω} , Nin = N \ Nout,

where N is defined as Nv or Nm for the standard or nonconforming element
space, respectively. We then expand this notion to the elements, such that

Tin =
{
T : T ∈ Th, p /∈ T,∀p ∈ Nout} , Tout = Th \ T

in ,

where T is the closure of T . For each xi ∈ Nout we find the closest element
Ti ∈ Tin , where we judge the distance from the element as the distance
between xi and the centre of the triangle. Then, we remove the basis function
corresponding to xi, which we denote as φi, and modify the basis functions
corresponding to the nodes in Ti. We denote the nodes in Ti as xij and
their corresponding functions as φij , where 1 6 j 6 d , where d is three for
triangular elements and four for quadrilateral elements.

The modification to the basis functions is as follows:

1. remove the basis function φi;

2. replace the basis functions φij with the functions

φ̃ij = φij + αjφi , 1 6 j 6 d ,

where αj are scalars satisfying

d∑
j=1

αjp
(
xij
)
= p (xi) ,

{
p ∈ P1 (Ω) triangular elements,
p ∈ span {1, x, y, xy} quadrilateral elements.

Here {αj}dj=1 are the barycentric coordinates of xi in relation to Ti. We denote
this boundary modified projection as Pst* for the standard projection and Pnc*

for the nonconforming projection.
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3 Results
In this section we present three numerical examples to illustrate the numerical
effectiveness of our proposed method. We investigate the L2-error and rate of
convergence for the standard projection and modified boundary projection
for both conforming and nonconforming elements, while using the original
gradient of the solution as a baseline. This investigation is performed on
triangular and quadrilateral elements. The different errors of the gradient of
the solution are:

• E (uh) =
∥∥∇u− ∇̃uh

∥∥
L2(Ω)

;

• Est (uh) =
∥∥∇u− Pst

(
∇̃uh

)∥∥
L2(Ω)

for projection to the standard ele-
ment space;

• Enc (uh) =
∥∥∇u− Pnc

(
∇̃uh

)∥∥
L2(Ω)

for projection to the nonconforming
element space.

• Est* (uh) =
∥∥∇u− Pst*

(
∇̃uh

)∥∥
L2(Ω)

for boundary modified projection
to the standard element space;

• Enc* (uh) =
∥∥∇u− Pnc*

(
∇̃uh

)∥∥
L2(Ω)

for boundary modified projection
to the nonconforming element space.

The first two examples demonstrate the superconvergence of the method for
a regular solution. The third example demonstrates that the method shows
an improved convergence rate even when the solution is less regular.

3.1 Example 1

The first example has the exact solution of a simple polynomial in two variables

u = x2y2 + (x2 − 1)(y2 − 1) + xy . (4)

Dirichlet boundary conditions are applied on ∂Ω, where Ω = [−1, 1]
2 .
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Table 1: Triangle Example 1 errors and convergence rates R, where all errors
are operating on uh.

elem E R Est R Enc R Est* R Enc* R
32 1.2264 − 1.1734 − 0.9436 − 1.5197 − 1.7901 −
128 0.6339 1.0 0.5023 1.2 0.3647 1.4 0.4007 1.9 0.4600 2.0

512 0.3196 1.0 0.1888 1.4 0.1330 1.5 0.0865 2.2 0.0934 2.3

2048 0.1601 1.0 0.0682 1.5 0.0476 1.5 0.0187 2.2 0.0191 2.3

8192 0.0801 1.0 0.0243 1.5 0.0169 1.5 0.0042 2.1 0.0038 2.3

Table 2: Quadrilateral Example 1 errors and convergence rates R, where all
errors are operating on uh.

elem E R Est R Enc R Est* R Enc* R
16 1.2295 − 1.1654 − 0.9065 − 1.1391 − 1.6725 −
64 0.6242 1.0 0.4684 1.3 0.3390 1.4 0.2974 1.9 0.3668 2.2

256 0.3133 1.0 0.1728 1.4 0.1215 1.5 0.0753 2.0 0.0626 2.6

1024 0.1568 1.0 0.0620 1.5 0.0431 1.5 0.0189 2.0 0.0114 2.5

4096 0.0784 1.0 0.0221 1.5 0.0152 1.5 0.0047 2.0 0.0024 2.2

The convergence rate of the unmodified gradient projections for the triangular
and quadratic elements approaches R = 1.5, as shown in Tables 1 and 2. The
boundary modified projection has a numerical convergence rate that appears
to be at least quadratic, whereas the nonconforming boundary modified
projection appears to be the best in terms of errors.

3.2 Example 2

The second example has a transcendental function as its solution. The exact
solution for this example is

u = ex(x2 + y2) + y2 cos(xy) + x2 sin(xy) . (5)

The Dirichlet boundary conditions are constructed on ∂Ω, where Ω = [0, 1]
2 .
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Table 3: Triangle Example 2 errors and convergence rates R, where all errors
are operating on uh.

elem E R Est R Enc R Est* R Enc* R
32 0.9173 − 0.7477 − 0.4355 − 0.4787 − 0.4135 −
128 0.4717 1.0 0.2894 1.4 0.1562 1.5 0.1223 2.0 0.1031 2.0

512 0.2382 1.0 0.1062 1.4 0.0551 1.5 0.0292 2.1 0.0237 2.1

2048 0.1195 1.0 0.0381 1.5 0.0193 1.5 0.0070 2.1 0.0054 2.1

8192 0.0598 1.0 0.0135 1.5 0.0068 1.5 0.0017 2.0 0.0013 2.1

Table 4: Quadrilateral Example 2 errors and convergence rates R, where all
errors are operating on uh.

elem E R Est R Enc R Est* R Enc* R
16 0.8530 − 0.5914 − 0.4168 − 0.4868 − 0.3949 −
64 0.4297 1.0 0.2151 1.5 0.1495 1.5 0.1056 2.2 0.0732 2.4

256 0.2153 1.0 0.0772 1.5 0.0534 1.5 0.0221 2.3 0.0146 2.3

1024 0.1077 1.0 0.0276 1.5 0.0190 1.5 0.0046 2.3 0.0031 2.2

4096 0.0539 1.0 0.0098 1.5 0.0067 1.5 0.0010 2.2 0.0007 2.1

The convergence rates for the projected solutions approach R = 1.5 for both
elements and projections. The boundary modified projections approach a
higher rate of R = 2 for both elements and both projections, as shown in
Tables 3 and 4.

3.3 Example 3

The domain for this problem is [−1, 1]
2 with a slit {(x, y) ∈ R2 : 0 6 x 6

1 , y = 0} , which is removed, giving us Ω = [−1, 1]
2
\ {(x, y) ∈ R2 : 0 6

x 6 1 , y = 0} . Therefore, this problem has a less regular solution than the
previous examples because it has singularities along the slit that have been
removed from the normal domain. The solution is

u = rα sin (αθ) , r =
√
x2 + y2 θ = arctan

(y
x

)
. (6)
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Table 5: Triangle Example 3 errors and convergence rates R, where all errors
are operating on uh.

elem E R Est R Enc R Est* R Enc* R
128 0.2973 − 0.1414 − 0.1025 − 0.0673 − 0.0607 −
512 0.1506 1.0 0.0501 1.5 0.0365 1.5 0.0222 1.6 0.0175 1.8

2048 0.0757 1.0 0.0178 1.5 0.0130 1.5 0.0071 1.6 0.0056 1.6

8192 0.0379 1.0 0.0063 1.5 0.0046 1.5 0.0023 1.6 0.0018 1.6

32768 0.0190 1.0 0.0022 1.5 0.0017 1.5 0.0007 1.6 0.0006 1.7

Table 6: Quadrilateral Example 3 errors and convergence rates R, where all
errors are operating on uh.

elem E R Est R Enc R Est* R Enc* R
64 0.1775 − 0.0981 − 0.0692 − 0.0482 − 0.0322 −
256 0.0892 1.0 0.0361 1.4 0.0255 1.4 0.0160 1.6 0.0099 1.7

1024 0.0447 1.0 0.0132 1.5 0.0093 1.5 0.0054 1.6 0.0033 1.6

4096 0.0223 1.0 0.0048 1.5 0.0034 1.5 0.0018 1.6 0.0011 1.6

16384 0.0112 1.0 0.0017 1.5 0.0012 1.5 0.0006 1.6 0.0004 1.6

We have used Dirichlet conditions on ∂Ω.

The projected solutions have convergence rates that are lower than R = 1.5 ,
but seem to approach a convergence rate slightly below R = 1.5 , as seen
in Tables 5 and 6. Both these convergence rates are higher than the base
solution’s rate of convergence.

The boundary modified solutions continue to have higher rates of convergence,
even in this less regular problem. However, the convergence rates are less
than the R = 2 found in the more regular cases of Examples 1 and 2, and a
higher number of elements were required in Example 3 before the boundary
modified projection could be applied since the method requires that there
exists at least one element that has no nodes on ∂Ω.
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4 Conclusion
We have applied the gradient recovery method proposed by Ilyas, Lamichhane
and Meylan [7] to nonconforming triangular and quadrilateral elements. We
have numerically demonstrated that the recovered gradient has a better
convergence rate than the standard gradient. An interesting finding is that
we get best results projecting the gradient of a nonconforming space to the
corresponding nonconforming space.
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