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Low rank approximation of positive
semi-definite symmetric matrices using
Gaussian elimination and volume sampling
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Abstract

Positive semi-definite matrices commonly occur as normal matrices
of least squares problems in statistics or as kernel matrices in machine
learning and approximation theory. They are typically large and dense.
Thus algorithms to solve systems with such a matrix can be very costly.
A core idea to reduce computational complexity is to approximate the
matrix by one with a low rank. The optimal and well understood choice
is based on the eigenvalue decomposition of the matrix. Unfortunately,
this is computationally very expensive. Cheaper methods are based on
Gaussian elimination but they require pivoting. We show how invariant
matrix theory provides explicit error formulas for an averaged error
based on volume sampling. The formula leads to ratios of elementary
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symmetric polynomials on the eigenvalues. We discuss several bounds
for the expected norm of the approximation error and include examples
where this expected error norm can be computed exactly.
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1 Introduction

The eigenvalue decomposition of a real symmetric semi-positive definite matrix
M € R™" of rank r is

M = QAQT, (1)
where the factor Q € R™" has 1 orthonormal columns and A € R"" is a
diagonal matrix with elements A; > --- > A, > 0. Such matrices are common
in applications in machine learning and information retrieval among others [5].
The normal matrix M = XX which occurs in least squares problems is one
instance.

Often M is very large, dense and unstructured. However, if the rank r is
small, then the eigenvalue decomposition (1) shows that it is possible to
represent M using the nr + r matrix elements of the matrices Q and A. If
many of the eigenvalues A; > 0 are close to zero, then one may set these
eigenvalues to zero. So given a matrix M, one might compute the eigenvalue
decomposition and then remove small eigenvalues and their corresponding
eigenvectors from the factors A and Q to get a good approximation M, which
is represented by nk+k real numbers. The Eckart—Young-Mirsky theorem |[1]
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states that the approximation My is optimal. Such an approximation leads
to improved computational performance when used in algorithms requiring
matrix vector products, leads to higher stability and is useful in data analysis
(see principal component analysis). However, the computational cost of the
eigenvalue decomposition is typically of order O(n?) and requires the storage
of n? numbers. Thus for large n, this approach is often not feasible in practice.

Thus there is a real need to have a faster algorithm which obtains a close
to optimal approximation of M. Here we consider a popular example of
such an algorithm which is often referred to CUR or the pseudo-skeleton
approximation [4]. This algorithm selects k columns (or rows) of the symmetric
matrix M and uses them to approximate M. More specifically

A BT
_ pT
M =P {B C} P, (2)
where P permutes the columns such that the selected ones are moved to the
left and A € R**. The CUR approximation is then

(3)

o T
Mk:PT{A B }P

B BA BT

One can show that this approximation is of rank k and in the following
sections we investigate the error of this approximation.

For the CUR approximation (3) to be defined, A needs to be invertible. One
approach is to select the k columns for which the determinant of A is maximal.
If the matrix M has a rank r > k then this choice of A guarantees that A
is invertible. Here we consider an approach which selects the k columns at
random with probability proportional to the determinant of A. This choice
of A has been termed volume sampling |3]. In this case the probability of
selecting k columns which lead to a non-invertible A is zero. For this method
one can get an exact expression for the expectation of a suitable norm of the
error. This is similar to the optimal case. However, in contrast to the optimal
case, the determination of the error is often not computationally feasible even
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if all the eigenvalues are known. Here we study this further and present upper
bounds for these expected errors. Derezinski and Mahoney [2] review volume
sampling algorithms (also called determinantal point processes).

One suitable norm for the error analysis is the nuclear norm (also called trace
norm or Schatten 1 norm). The nuclear norm of M is the sum of its singular
values. In the case of semi-definite symmetric matrices M the singular values
are equal to the eigenvalues and the nuclear norm is

IM]l. = 3 . (@)

As we assume that the eigenvalues are numbered in decreasing order (A1 <
Ai), the nuclear norm of the error of the optimal approximation is

IMi=MJ. = ) A (5)

i=k+1

In Section 2 the volume sampling CUR approach is discussed and a formula
for the expected error in terms of matrix invariants is established. The errors
as functions of the eigenvalues are further discussed in Section 3 and two
special types of matrices are considered in more depth.

2 Rank approximation and expected error in
terms of matrix invariants

In order to establish the framework for volume sampling we introduce the
sample space to be the symmetric group (3 = S;;. Then any sample w € §,, is
a permutation of a set with n elements. The symmetric group is the structure
of the set of permutation matrices of arrays with n elements and we denote
the permutation matrix defined by some w € Q as P,,. The function defined
by M(w) = P,MP[ for w € Q is then a matrix valued random variable. We
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denote the blocks defined in equation (2) of M(w) by A(w), B(w) and C(w),
and for simplicity denote the corresponding variables by M, A, B and C.
Finally, we define the probability of some w € Q to be

det A(w)
S o det A(E) (©)

With this framework we now define the expected error of the CUR approxi-
mation to be

e (IMc=MJ.) = 3 pulw) | Clw) = Blw)A{w) " B(@)".. (7

pr(w) =0

prlw) =

That is, the expectation is a sum over permutations w with nonzero probability.
The determinant det A(7y) is a kth order principal minor of the unpermuted
matrix M. One can see that each principal minor of M occurs k!(n—Xk)! times
when cycling through all the elements of y € Q..

Theorem 1 (expected error of volume sampling CUR). Let M be a symmetric

positive semidefinite matrix and /T\/\lk be the rank k CUR approximation defined

by (3). Using the probability distribution px(w) (6) and random variable A(w)

defined above, the expectation of the nuclear norm of the approximation error

18

an Y, ®)
K

where ¢;(M) is the sum of the jth principal minors of M.

€ (IMc~MJL.) = (k+1)

In the proof we use the following Lemma.
Lemma 2. If

b" vy
15 positive semidefinite and det A = 0 then

det [A b} =0.
Y

o}

bT
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Proof: As det A = 0 there exists an x # 0 such that Ax = 0. From the
semi positive-definiteness one then gets for all 1 € R

X' n]M m =2x'b+n*y >0,

and thus b'x = 0. Thus the vector [XTO} is in the null space of M. '

Proof of Theorem 1: As each minor occurs k!(n — k)! times in the se-
quence A(Q) one has

D detAw) =kl(n—K)lek (M),

and consequently
det A(w)

= ) 9

ki(n—k)!lex (M) )
As C—BA BT is positive semi-definite almost everywhere (with respect to
the probability py) one gets

prlw)

n—k

IBA™'B" — C||, = trace (C—BA"'B") = > cis—bJA "b;
i=1

Ty ]

det A ’

almost everywhere, where b/ is the ith row of B. Multiplying both sides
with det A then summing over all permutations and applying Lemma 2 gives

ii

n—k
D (det A(w))[|B(w)A(w) 'B(w)" — Clw)ll.= )} det {?T H '

p(w)7£0 wen i=1 bt

Interchanging the order of the double sum gives (k4 1)!(n—k)! ci1(M) and
inserting py from equation (9) completes the proof. [
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3 The case of diagonal matrices or error and
stability bounds in terms of the eigenvalues

The matrix invariants ¢, (M) are defined as the coefficients of the characteristic
polynomial of the matrix M (up to signs). Consequently, they are invariant
under orthogonal similarity transforms of M and thus

ck(M) = ci(A) = ex(Ary. .y A0,

where ey are the elementary symmetric polynomials. The evaluation of
elementary symmetric polynomials is computationally very demanding in
general. We will thus focus on upper bounds. A simple bound is given in
Proposition 3. This bound is tight and gives a good indication of what the
error is for spectra which are rapidly decreasing. However, for spectra like
Ai = 1/i?, for i =1,2,..., this bound is highly overestimating the error. In
this section we discuss ways to get better bounds for these cases, but first
we demonstrate the performance of these methods with a computational
experiment.

Let Ay =1/i*fori=1,...,n and n = 2= . We define a piecewise constant
array W by
1
M= 77 wherei=2'+j,j=1,...,2' = Tand 1 =0,..., Lo — 1.

One can show that p; > A fori = 1,...,n. From the monotonicity (Lemma 8)
one sees that

ewr1(A) < er1(p)
ex(A) T e(n)
This is illustrated computationally in Figure 1 where the simple (old) bound
from Proposition 3 is also displayed to demonstrate the superiority of the
new bound. While not as simple as the simple bound of Proposition 3, the
bound we give here is substantially more accurate and useful for error bounds.
In contrast to the values for A, the upper bound can be computed even for
very large n and medium sized k, as explained below.
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Figure 1: Eigenvalues and the ratios ey, 1/ex.

An upper bound for ey, /e, which does not require any properties of the
eigenvalues is obtained from the following proposition.

Proposition 3 (simple bound). Let n,k € N, n > k and A; > 0 for all
i=1,...,m. Then

ekJr]()\],...,)\n) < €k(}\1,...,7\n) €1(7\k+],...,}\n).

Proof: The proof is by induction where the main step is (the second line
uses the induction assumption)

ek+1(7\1,...,)\n+1) = ek(?\1,...,7\n)7\n+1 —l—ekJr](}\],...,)\n)
< ekp\h-“)}\n))\n—!—] +ek(7\1)--°>}\n) e](}\k—i—h-“)}\n)
= ek(?\1,...,7\n) e](Ak+],--.)An+])-
[ Y

Thus ey, 1/ex is bounded by the optimal error, and by Theorem 1 the CUR
error is bounded by k + 1 times the optimal error.

In the case where A; = q' for some q € (0, 1) one can compute the elementary
symmetric polynomials explicitly, as described by the following proposition.
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Proposition 4 (power eigenvalues).

k

o 1— g™ i+1
ec(1,q,--,q k‘/ZH 1iq , forallk,neN. (10)
Proof: Let ey, := ex(1,q,...,q"'). We use induction over n to show
that equation (10) holds for all k.
First, for n =1 one has ey; = €17 = 1 and ex; = 0 for k > 1 by definition

of ex. Thus the claimed result holds for n = 1. We now show that if (10)
holds for some n and all k, then it also holds when n is replaced by n + 1.
For this we use the following recursion for symmetric elementary polynomials:

n
€kn+1 = q €x—1n + €kn .

Then one verifies that the claimed equation (10) is equivalent to

ko i n
9 —9g
i=1
qkf1 . qn
= 1— qk (9% In- (11)
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Using the value of ey 1/ey obtained from equation (11) in Proposition 4 leads
to the expected error

K1
(k+ 1St - i

k DR n
e “Tiqtr o ggqrd Fooral.

One sees that the CUR method is competitive for small q but not for q ~ 1.

We now derive some results which are useful in the derivation and computation
of error bounds. First we pad the eigenvalue vectors with zeros so that A € £y,
the set of series which are nonzero for finitely many indices.

For any k we define the head of A to be A" = (Ay,...,A,0,...) and the
tail A' = (Axi1y ...y Ay 0y...) . We introduce a concatenation of two spectra
A and W

D\)FL] = (AMyee ey Any iy oo vy Himy 0y 00

which potentially is reordered for size but in the cases considered here we
have w; < An. Thus A = [A", AY]. The decrease of the tail is modelled by the
sequence p with

pi:}\%/AkJr], 121,2, (12)

We then introduce a function f: R$® — R*"? with components

We now introduce the convolution of two elements of RT by

(uxv); = Z WiV .

i+j=k

As the e; are coefficients of a characteristic polynomial one has the following
lemma.

Lemma 5 (convolution theorem).

FIA, u]) = F(A) « F(p).
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The next lemma is a consequence of the fact that f; is a homogeneous i — 1
degree polynomial.

Lemma 6 (scaling lemma). The ith component f; of f satisfies
fi(S}\) = Sifi(A) .
One then has the following.

Proposition 7. Let u" = f(A") and w = f(p). Then

er+1(A)
ex(A)

= 'Y}\k—H )

where .
k—i . h
o im0 Mot Wi 1

K k—i h
2 o AN Wiy

Y

Proof: By the convolution theorem Lemma 5 and the definition of p in
equation (12) one has
u=u'su",

where u = f(A) and u' = f(A') = f(Ai1p) . Using the scaling Lemma 6 and
u,; = 0 one then gets

ko ak—i h
Wt _ 2 im0 Mt Wi il
we YR NSy

i=0 k41 Vk—1t

[ )

We now show results used to obtain bounds for the case of slowly decreasing p;.
In these cases one observes that the sequence wi,/wj first increases before it
decreases. The main tool to obtain bounds is the monotonicity of the ratios

er+1(A)/ex(A) in A.
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Lemma 8 (monotonicity). Let 0 < A < @ component wise then

exr1(A) < exr1(p)
ex(\) T el

This lemma can be proven directly but is also a consequence of a result by
Marcus and Lopes [6]:

exr1(A+ ) S exr1(A) | err(p)
eA+1) 7 el ex(p)

A direct application of the convolution theorem Lemma 5 gives the following
representation.

Proposition 9.
f(A) = ubma ok xuf (13)

where u' = f(q'en) has the components

ul_ 1G—1) A i — 1 21
j_q ]_1 y )= heen 2

This proposition is used to show that the determination of the ratio ey 1/ex
is computationally feasible for the piecewise spectrum p used in Figure 1.
The complexity of computing the 1, convolutions of size k + 1 is of or-
der O(Lyax(k + 1)?). Using this formula is typically much faster than using
the standard recursions which results in a total complexity of O(n(k + 1))
for very large n. One observes that often only a small number of components
of the W are substantially different from zero so that the complexity can be
further reduced.

4 Conclusion

While the CUR method combined with volume sampling admits an explicit
and exact formula for the expected approximation error of the computed
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rank k approximation there is little known about the performance of the
method for slowly decreasing eigenvalues. This article provides new error
bounds for the CUR method with volume sampling which shows that this
approach is competitive with the optimal approach for slowly decreasing
eigenvalues even for large approximation ranks.

Future work may consider the effect of the initial eigenvalues and the rate
of decrease of the tail of the spectrum in more detail using the convolution
formula provided here.
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