
ANZIAM J. 62 (CTAC2020) pp.C225–C241, 2022 C225

Monte Carlo tree search for generating vectors
of lattice rules

Manoj Palani1

(Received 15 December 2020; revised 10 January 2022)

Abstract

Lattice rules are widely studied in the context of quasi-Monte Carlo
methods as a means to achieve a small integration error. The rules
themselves are determined completely by so called generating vectors,
so there is an interest in methods for constructing vectors that perform
well. This article introduces a new component-wise construction of
a generating vector using the principles of Monte Carlo tree search,
with the goal of avoiding local optima. Error bounds are proven for
the vectors obtained from this method, which are analogous to existing
results for the popular component by component construction.

Contents
1 Introduction C226

doi:10.21914/anziamj.v62.16070, © Austral. Mathematical Soc. 2022. Published
2022-02-24, as part of the Proceedings of the 19th Biennial Computational Techniques and
Applications Conference. issn 1445-8810. (Print two pages per sheet of paper.) Copies of
this article must not be made otherwise available on the internet; instead link directly to
the doi for this article.

https://doi.org/10.21914/anziamj.v62.16070

1 Introduction C226

2 Monte Carlo tree search C228
2.1 Description . C228
2.2 Application to lattice rules C228

3 Numerical Results C237

1 Introduction
Lattice rules, belonging to the wider quasi-Monte Carlo family, are an approach
to feasibly tackle numeric integration in higher dimensions. Our starting
point is an integral over the s-dimensional unit cube with s > 1 :

Is(f) =

∫
[0,1]s

f(x)dx , (1)

which rank-1 lattice rules approximate with an equal weight n-point cubature
rule

Qn,s(f) =
1

n

n−1∑
k=0

f(tk) , (2)

where the points are deterministically given by

tk =
kzn

n
, (3)

for a generating vector z ∈ Usn , where Un is the multiplicative group of
integers modulo n and xn denotes the remainder when x is divided by n,
which here has the effect of keeping the points within the unit cube. In
general, every lattice rule can be written as a multiple sum involving one
or more generating vectors, with the minimal number of generating vectors
required known as the rank of the rule. In this case, rank-1 and the definition
indicate that the rule is completely specified by a single generating vector,
so finding a good lattice rule giving a low integration error is equivalent to
finding a good generating vector.

1 Introduction C227

Due to the size of the search space, an exhaustive search is not feasible as
s and n grow, and the standard approach is to use the component by component
(cbc) construction, popularised by Sloan and Restzov [7] and originally
introduced by Korobov [4]. Favourable properties of this construction have
since been proven [1, 5, among others] and a fast construction was proposed [6],
all of which have cemented this method as a go-to for constructing rank one
lattice rules.

For all its merits, an inherent drawback of the cbc construction is the greedy
nature of the construction algorithm, which makes it susceptible to favouring
local over global optima. For instance, suppose z∗ is a global optimiser of the
full s dimensional error criterion and that the cbc method has constructed
(z∗1 , . . . , z

∗
d−1) for some d < s . Then in the case that z∗d is not the optimiser

of the d-dimensional error, the optimal solution z∗d will be passed over and z∗
cannot be obtained after this step in the construction.

Monte Carlo tree search (mcts) appears a good candidate for addressing
this concern as it takes ‘future’ outcomes into consideration as opposed to a
strictly local optimality criterion. This article applies the principles of mcts
to the component wise construction of a generating vector to introduce a new
method for constructing generating vectors of rank-1 lattice rules. We work
in the ‘standard setting’ with the shift averaged worst case error criterion and
weighted reproducing kernel Hilbert spaces, which were originally introduced
by Sloan and Woźniakowski [8]. In particular, the shift averaged worst case
error for a rank-1 lattice rule specified by generating vector z in the weighted
Sobolev space is

[
esh
n,s(z)

]2
=

∑
∅6=u⊆{1:s}

γu

(
1

n

n−1∑
k=0

∏
j∈u

[
ω
(
kzj mod n

n

)
+ β

]
− β|u|

)
, (4)

where γu are weights and ω(x) = x2−x+ 1
6
(the second Bernoulli polynomial),

with β = c2 − c+ 1
3
for the anchored space with anchor c, and β = 0 for the

unanchored space.

2 Monte Carlo tree search C228

2 Monte Carlo tree search

2.1 Description

Monte Carlo tree search is a heuristic search algorithm which is used in many
applied computer science problems, most famously in computer programs
for playing turn based games such as Chess, Shogi or Go. One of the most
remarkable feats in this arena has been the victory of Alpha Go, Google’s Go
playing program, over the human world champion Lee Sedol in 2016. The
sequential decision making in such games makes them readily visualisable
as trees, with nodes representing a valid position or state in the game and
decisions at each turn represented by branches extending out from parent to
child nodes.

The mcts algorithm aims to find optimal decisions in search spaces by taking
random samples in the decision space and progressing the search according
to the results. Loosely speaking, at each stage it picks the choice which will
give it the best chance of success in the future. This is achieved by ‘playing
out’ each possible decision by randomly simulating a game to the end from
that node, and updating beliefs about each node’s chance of success based on
those results.

2.2 Application to lattice rules

There are many similarities between the turn based game problem and the
task of constructing a good generating vector for rank-1 lattice rules. Any
component wise construction can be viewed as a tree search in which we want
to find the optimal path through the tree; that is, the sequential choice of
components which will give us a low worst case error at the end. A search
of this tree in the vein of mcts, where at each dimension we choose the
component which gives us the best chance of this low final error, appears a
sensible way of finding this path.

As mentioned previously, a reason to investigate a method which has some

2 Monte Carlo tree search C229

consideration of the final outcome is the greedy nature of the cbc construction.
In the game of chess, for instance, capturing an opponent’s piece when it is
available is not always the best choice, as it may result in a worse positioning
of the player’s pieces for upcoming turns.

Similarly, we can envisage situations where a component of a generating vector
is chosen to satisfy the local optimality criterion that may prohibit otherwise
good choices that would have been available for the full generating vector. It
is with these insights then that we introduce the following construction.

1. Generate t1, . . . , tR uniformly from Usn. We refer to these as tails because
their components are appended with vectors of smaller dimension to
form a vector of dimension s. Let superscripts denote an index within
this set and subscripts denote a component of a tail. That is, trd specifies
the dth component of the rth tail tr.

2. For each d = 1, . . . , s choose the component zd ∈ Un which has the
lowest average squared worst case error over the tails. That is,

z∗d = argmin
zd∈Un

1

R

R∑
r=1

[
esh
n,s(z

∗
1 , . . . , z

∗
d−1, zd, t

r
d+1, t

r
d+2, . . . , t

r
s)
]2
. (5)

In analogy to mcts, at each stage the randomly generated tr serve as random
completions to the vector that has been constructed so far and we ‘play
out’ each choice by looking at the full s-dimensional worst case error given
a particular completion. Then we consider the component which gives the
lowest average error across all the completions as being the one which gives
us the best chance of success.

Naturally other choices for z∗d are possible here. For example, at each step
one could choose the component z∗d which produces the minimum error across
any of the tails. However, the choice of a simple average lends itself well to
mathematical arguments in proofs. Note also that the use of R tails nominally
increases the construction cost by a factor of R.

2 Monte Carlo tree search C230

We now prove some error bounds of the described construction, which are
probabilistic due to the inherent randomness. First we prove that in the
simple case of a prime number of cubature points n and product weights,
the construction has an expected squared worst case error smaller than the
quasi-Monte Carlo (qmc) mean, which is analogous to Theorem 5.7 of Kuo
and Sloan [2] .

Theorem 1. Consider the weighted Sobolev space from (4) (either anchored
or unanchored) with product weights γ1 > γ2 > · · · > 0 and prime

n >
γ1

6(1+ γ1β)
. (6)

If z∗ is constructed according to the above method, then

E
[
esh
n,s(z

∗
1 , . . . , z

∗
d, td+1, . . . , ts)

]2
<
1

n

[
s∏
j=1

(
βj +

γj

6

)
− β̄s

]
, (7)

for d = 1, . . . , s where βj = 1 + γjβ , β̄s =
∏s

j=1 βj and the expectation is
taken over t ∈ {t1, . . . , tR} . The right hand side of (7) is known as the qmc
mean.

Proof: We proceed by induction. First consider the base case d = 1 . For
any z1 ∈ Un and t ∈ {t1, . . . , tR} , by the definition of z∗ = (z∗1 , . . . , z

∗
s) we

have

E
[
esh
n,s(z

∗
1 , t2, . . . , ts)

]2
6 Ez1E

[
esh
n,s(z1, t2, . . . , ts)

]2
= E

[
esh
n,s(t1, . . . , ts)

]2
,

where the last step exploits the fact that each component of t is identically
distributed to z1 as uniform on Un. Now

[
esh
n,s(t)

]2
= −β̄s +

1

n

s∏
j=1

(
βj +

γj

6

)
+
1

n

n−1∑
k=1

s∏
j=1

[βj + γjωk(tj)] ,

2 Monte Carlo tree search C231

where
ωk(x) = ω

(
kx mod n

n

)
,

and ω is the second Bernoulli polynomial x2 − x+ 1
6
. So taking expectations,

E
[
esh
n,s(t)

]2
= −β̄s +

1

n

s∏
j=1

(
βj +

γj

6

)
+
1

n

n−1∑
k=1

s∏
j=1

(βj + γjE [ωk(y)]) ,

where y is generated uniformly from Un, because the components of t are
i.i.d uniform on Un. Then from equation (5.17) of Kuo and Sloan [2]

E [ωk(y)] =
1

n− 1

n−1∑
y=1

ωk(y) = −
1

6n
,

we get

E
[
esh
n,s(t)

]2
= −β̄s +

1

n

s∏
j=1

(
βj +

γj

6

)
+
1

n

n−1∑
k=1

s∏
j=1

(
βj −

γj

6n

)
= −β̄s +

1

n

s∏
j=1

(
βj +

γj

6

)
+
n− 1

n

s∏
j=1

(
βj −

γj

6n

)
.

Defining κ as the qmc mean,

E
[
esh
n,s(z

∗
1 , t2, . . . , ts)

]2
− κ 6

(
−1+

1

n

)
β̄s +

n− 1

n

s∏
j=1

(
βj −

γj

6n

)
=
n− 1

n

[
s∏
j=1

(
βj −

γj

6n

)
−

s∏
j=1

βj

]
.

As the function x 7→ x/[6(1 + kx)] is increasing for all k ∈ R , the assump-
tion (6) on the weights ensures

n >
γ1

6(1+ γ1β)
>

γ2

6(1+ γ2β)
> · · ·

2 Monte Carlo tree search C232

so that βj = 1+ γjβ > γj
6n

for all j. As a result

βj > βj −
γj

6n
> 0 ,

for all j, which yields
s∏
j=1

(
βj −

γj

6n

)
<

s∏
j=1

βj .

Hence
E
[
esh
n,s(z

∗
1 , t2, . . . , ts)

]2
< κ ,

which proves the d = 1 case.

Assume now the claim is true for dimension d. Then by the same argument
employed earlier,

E
[
esh
n,s(z

∗
1 , . . . , z

∗
d, z
∗
d+1, td+2, . . . , ts)

]2
6 Ezd+1E

[
esh
n,s(z

∗
1 , . . . , z

∗
d, zd+1, td+2, . . . , ts)

]2
= E

[
esh
n,s(z

∗
1 , . . . , z

∗
d, td+1, td+2, . . . , ts)

]2
.

But this last term is less than κ by the induction hypothesis. Hence the claim
holds at dimension d+ 1 and the result is proven by induction. ♠

We now look to prove an error bound for the unanchored Sovolev space, which
applies for general weights and general n. We first prove some auxiliary
lemmas that provide the estimates needed for this result.

Lemma 2. For t ∈ U|u|
n , u ⊆ {1 : s} and λ ∈ (1/2, 1] we have[

1

n

n−1∑
k=0

∏
j∈u

ωk(tj)

]λ
6

1

(2π2)λ|u|

∑
hu∈(Z\{0})|u|

1∏
j∈u h

2λ
j

1{hu·tu ≡ 0 mod n}. (8)

2 Monte Carlo tree search C233

Proof: For any k = 0, 1 . . . , n−1 and x ∈ [0, 1] the Fourier expansion of ω:

ωk(x) =
1

2π

∑
h∈Z\{0}

e(2πihkx)/n

h2
,

gives

1

n

n−1∑
k=0

∏
j∈u

ωk(tj) =
1

(2π2)|u|
1

n

n−1∑
k=0

∑
hu∈(Z\{0})|u|

e(2πkihu·tu)/n∏
j∈u h

2
j

=
1

(2π2)|u|

∑
hu∈(Z\{0})|u|

1∏
j∈u h

2
j

1{hu·tu ≡ 0 mod n} ,

by the character property in equation (5.2) of Kuo and Sloan [2]. Thus the
result follows upon exponentiating both sides and applying the inequality(∑

k

ak

)λ
6

∑
k

aλk , ak > 0 , λ ∈ (0, 1] . (9)

♠

Lemma 3. Let u ⊆ {1 : s} and t have a uniform distribution on Usn. Then

E

[∑
hu∈(Z\{0})|u|

1∏
j∈u h

2λ
j

1{hu·tu ≡ 0 mod n}

]
6

2

ϕ(n)
[2ζ(2λ)]

|u|
, (10)

where ϕ is Euler’s totient function

ϕ(n) := |Un| , (11)

and ζ is the Riemann zeta function

ζ(x) :=

∞∑
h=1

1

hx
, x > 1 . (12)

2 Monte Carlo tree search C234

Proof: Let n | hu denote n | hj for all j ∈ u and write n - hu to mean there
exists ` ∈ u such that n - h` . Expanding

E

[∑
hu∈(Z\{0})|u|

1∏
j∈u h

2λ
j

1{hu·tu ≡ 0 mod n}

]

=
1

ϕ(n)|u|

∑
tu∈U|u|

n

∑
hu∈(Z\{0})|u|

1∏
j∈u h

2λ
j

1{hu·tu ≡ 0 mod n}

=
1

ϕ(n)|u|

(∑
tu∈U|u|

n

∑
hu∈(Z\{0})|u|

1∏
j∈u h

2λ
j

1{hu·tu ≡ 0 mod n , and n|hu}

)

+
1

ϕ(n)|u|

(∑
tu∈U|u|

n

∑
hu∈(Z\{0})|u|

1∏
j∈u h

2λ
j

1{hu·tu ≡ 0 mod n , and n-hu}

)
.

We now consider these two terms (call them S1 and S2) separately.

For the first term, as n | hu guarantees hu · tu ≡ 0 mod n for all t, the
average over tu vanishes to leave

S1 =
∑

hu∈(Z\{0})|u|

1∏
j∈u h

2λ
j

1{n |hu} =
∑

mu∈(Z\{0})|u|

1

n2λ
∏

j∈um
2λ
j

.

Writing this as a multiple sum and distributing the terms of the product
accordingly,

S1 =
1

n2λ

∑
mu1∈Z0

1

m2λ
u1

· · ·
∑

mu|u|∈Z0

1

m2λ
u|u|

=
1

n2λ

(∑
m∈Z0

1

m2λ

)|u|

=
[2ζ(2λ)]

|u|

n2λ
.

As ϕ(n) 6 n− 1 < n , we have 1
ϕ(n)

> 1
n
> 1

nλ
. Hence

S1 6
(2ζ(2λ))

|u|

ϕ(n)
.

2 Monte Carlo tree search C235

Next, in S2, n - hu says that there exists an ` ∈ u such that n - h` . Thus

S2 =
1

ϕ(n)|u|

n−1∑
c=1

(∑
t`∈Un

∑
h`∈Z\{0}

h`≡−ct−1` mod n

1

h2λ`

)

×

(∑
tu\{`}∈U

|u|−1
n

∑
hu\{`}∈(Z\{0})|u|−1
hu\{`}·tu\{`}≡c mod n

1∏
j∈u\{`} h

2λ
j

)
.

Now an identical argument to that in Theorem 5.8 of Kuo and Sloan [2] shows
that for fixed 1 6 c 6 n− 1 we have∑

t`∈Un

∑
h`∈Z\{0}

h`≡−ct−1` mod n

1

h2λ`
6 2ζ(2λ) .

Thus

S2 6
1

ϕ(n)|u|
2ζ(2λ)

∑
tu\{`}∈Un|u|−1

∑
hu\{`}∈(Z\{0})|u|−1
hu\{`}·tu\{`} 6≡0 mod n

1∏
j∈u\{`} h

2λ
j

6
1

ϕ(n)|u|
2ζ(2λ)

∑
tu\{`}∈Un|u|−1

∑
hu\{`}∈(Z\{0})|u|−1

1∏
j∈u\{`} h

2λ
j

=
[2ζ(2λ)]

|u|

ϕ(n)
,

where the crude bounding of the restricted sum with the unrestricted sum
applies because each term in the sum is non negative. Consequently

S1 + S2 6
2

ϕ(n)
[2ζ(2λ)]

|u|
.

♠

2 Monte Carlo tree search C236

We are now ready to prove a second error bound, which shows that the
algorithm (5) is expected to yield a convergence rate arbitrarily close to O(n−1)
(this is analogous to Theorem 5.8 of Kuo and Sloan [2] for the standard
component-by-component construction).

Theorem 4. For d = 1, . . . , s if z∗1 , . . . , z∗d−1 have been chosen according to
the construction (5), then

E
[
esh
n,s(z

∗
1 , . . . , z

∗
d, td+1, . . . , ts)

]2
6

[
2

ϕ(n)

∑
∅6=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|
]1/λ

(13)

for all λ ∈ (1
2
, 1] .

Proof: The proof is by induction. For the base case d = 1 , we see that

E
[
esh
n,s(z

∗
1 , t2, . . . , ts)

]2
6 Ez1E

[
esh
n,s(z1, t2, . . . , ts)

]2
= E

[
esh
n,s(t1, . . . , ts)

]2
.

Hence, since the function x 7→ xλ is non decreasing and applying the inequal-
ity (9),

Eλ
[
esh
n,s(z

∗
1 , t2, . . . , ts)

]2
6 Eλ

[
esh
n,s(t)

]2
6 E

([
esh
n,s(t)

]2)λ
.

Applying (9) again and moving the expectation inside,

E
([
esh
n,s(t)

]2)λ
= E

(∑
∅6=u⊆{1:s}

γλu
1

n

n−1∑
k=0

∏
j∈u

ωk(tj)

)λ

6
∑

∅6=u⊆{1:s}

γλu E

(
1

n

n−1∑
k=0

∏
j∈u

ωk(tj)

)λ
.

We now apply Lemmas (2) and (3) in turn to obtain

E
([
esh
n,s(t)

]2)λ
6

∑
∅6=u⊆{1:s}

γλu
(2π2)|u|λ

E

[∑
hu∈Z|u|

0

1∏
j∈u h

2λ
j

1{hu·tu ≡ 0 mod n}

]

3 Numerical Results C237

6
2

ϕ(n)

∑
∅6=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|

,

so the claim indeed holds for the d = 1 case.

Now we assume the statement (13) holds at dimension d and consider

E
[
esh
n,s(z

∗
1 , . . . , z

∗
d, z
∗
d+1, td+2, . . . , ts)

]2
.

Using the previous argument,

E
[
esh
n,s(z

∗
1 , . . . , z

∗
d, z
∗
d+1, td+2, . . . , ts)

]2
6 Ezd+1E

[
esh
n,s(z

∗
1 , . . . , z

∗
d, zd+1, td+2, . . . , ts)

]2
6 E

[
esh
n,s(z

∗
1 , . . . , z

∗
d, td+1, td+2, . . . , ts)

]2
.

But this is nothing more than the left hand side of the statement in the
previous dimension d− 1, which satisfies the induction hypothesis. Hence

E
[
esh
n,s(z

∗
1 , . . . , z

∗
d, z
∗
d+1, td+2, . . . , ts)

]2
6

[
2

ϕ(n)

∑
∅6=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|
]1/λ

,

and our result is true by mathematical induction. ♠

The error bound (13) holds for all λ ∈ (1/2, 1] , so we obtain the optimal
convergence close to O(n−1) as λ→ 1/2 . The case λ = 1/2 is not possible as
the p-series defined by the Riemann zeta function only converges for λ > 1/2 .

3 Numerical Results
We consider the application of this construction to the problem of pricing
an Asian option, which is well investigated within the qmc literature [e.g.,
3] and consider how our construction performs in comparison to the vectors

3 Numerical Results C238

generated by the usual cbc method, and across the Brownian Bridge and
Principal Components covariance matrix factorisations which are frequently
used for qmc.

In producing the generating vectors, parameters for the problem and the
underlying function spaces were set. Firstly, R = 50 was used in the new
construction. Next, it was suggested by Sloan and Wang [9] that optimal
weights for lattice rules applied to pricing a path dependent option could be
of the form γj = aτ

j , so we consider the product weights γj = 0.5j (and in
the unanchored space for simplicity).

We use the single asset path dependent formulation set out by Kuo et al. [3],
which assumes that the price of the stock underlying the option follows a
geometric Brownian motion with d = 256 equally spaced time steps in the
time interval [0, T] with T = 1 , so that the stock price at time tj = jT/d is

Sj = S0 exp
[(
r− 1

2
σ2
)
tj + σwj

]
, (14)

where S0 = 100 is the stock price at time 0, r = 0.1 is the risk free interest
rate, σ = 0.2 is the volatility of the stock and w corresponds to a Brownian
path which is normally distributed with mean zero and covariance matrix Σ =
[min(ti, tj)]i,j=1d . The ‘fair price’ or premium of the option is approximated
by

1

n

n−1∑
i=0

g
(
AΦ−1(x(i))

)
(15)

where

g(w) = max

(
1
d

d∑
j=1

Stj − 100, 0

)
, (16)

Σ = AAT and Φ−1 denotes the inverse normal cumulative distribution
function applied element-wise to a vector or matrix, with the x(i) ∈ [0, 1]s

being the sample points used.

We apply random shifting to the qmc lattice point sets with 35 random shifts.
Figures (1) and (2) compare the error estimates for different numbers of points.

3 Numerical Results C239

Figure 1: Comparison of error estimates with the Brownian Bridge factorisa-
tion of the covariance matrix.

These results show that the lattice point set using the generating vector
constructed with the new method performs similarly to cbc for this problem.
In such cases, the additional computational cost of the new construction
compared to cbc makes the traditional construction a better choice. The
performance could potentially improve with a larger number of tails, as 50
seems small relative to the size of U256n for the choices of n here, but this
would require greater computational resources.

Acknowledgements
The content of this article was part of a thesis written under the supervision of
Josef Dick. Many thanks also to Josef for helpful suggestions which improved
the presentation of this material.

References C240

Figure 2: Comparison of error estimates with the Principal Components
factorisation of the covariance matrix.

References
[1] J. Dick. “On the convergence rate of the component-by-component

construction of good lattice rules”. In: J. Complex. 20 (2004),
pp. 493–522. doi: 10.1016/j.jco.2003.11.008 (cit. on p. C227).

[2] J. Dick, F. Y. Kuo, and I. H. Sloan. “High-dimensional integration: The
quasi-Monte Carlo way”. In: Acta Numer. 22 (2013), pp. 133–288. doi:
10.1017/S0962492913000044 (cit. on pp. C230, C231, C233, C235,
C236).

[3] M. Giles, F. Y. Kuo, I. H. Sloan, and B. J. Waterhouse. “Quasi-Monte
Carlo for finance applications”. In: ANZIAM J. 50 (2008),
pp. C308–C323. doi: 10.21914/anziamj.v50i0.1440 (cit. on
pp. C237, C238).

https://doi.org/10.1016/j.jco.2003.11.008
https://doi.org/10.1017/S0962492913000044
https://doi.org/10.21914/anziamj.v50i0.1440

References C241

[4] N. M. Korobov. “Approximate evaluation of repeated integrals”. In:
Doklady Akademii Nauk SSSR 124 (1959), pp. 1207–1210 (cit. on
p. C227).

[5] F. Y. Kuo. “Component-by-component constructions achieve the
optimal rate of convergence for multivariate integration in weighted
Korobov and Sobolev spaces”. In: J. Complex. 19 (2003), pp. 301–320.
doi: 10.1016/S0885-064X(03)00006-2 (cit. on p. C227).

[6] D. Nuyens and R. Cools. “Fast algorithms for component-by-component
construction of rank-1 lattice rules in shift-invariant reproducing kernel
Hilbert spaces”. In: Math. Comput. 75 (2006), pp. 903–920. doi:
10.1090/S0025-5718-06-01785-6 (cit. on p. C227).

[7] I. H. Sloan and A. V. Restzov. “Component-by-component construction
of good lattice rules”. In: Math. Comput. 71 (2002), pp. 263–273. doi:
10.1090/S0025-5718-01-01342-4 (cit. on p. C227).

[8] I. H. Sloan and H. Woźniakowski. “When are quasi-Monte Carlo
algorithms efficient for high-dimensional integrals?” In: J. Complex. 14
(1998), pp. 1–33. doi: 10.1006/jcom.1997.0463 (cit. on p. C227).

[9] X. Wang and I. H. Sloan. “Efficient weighted lattice rules with
applications to finance”. In: SIAM J. Sci. Comput. 28 (2006),
pp. 728–750. doi: 10.1137/S1064827502418197 (cit. on p. C238).

Author address

1. Manoj Palani, School of Mathematics and Statistics, University of
New South Wales, NSW 2000, Australia.
mailto:m.palani@unswalumni.com
orcid:0000-0001-9217-5171

https://doi.org/10.1016/S0885-064X(03)00006-2
https://doi.org/10.1090/S0025-5718-06-01785-6
https://doi.org/10.1090/S0025-5718-01-01342-4
https://doi.org/10.1006/jcom.1997.0463
https://doi.org/10.1137/S1064827502418197
mailto:m.palani@unswalumni.com
http://orcid.org/0000-0001-9217-5171

	Introduction
	Monte Carlo tree search
	Description
	Application to lattice rules

	Numerical Results

