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A new regularization for sparse optimization
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Abstract

Several numerical studies have shown that non-convex sparsity-
induced regularization can outperform the convex {;-penalty. In this
article, we introduce a new non-convex and non-smooth regulariza-
tion. This new regularization is a continuous and separable function
which provides a tighter approximation to the cardinality function
than any £4-penalty (0 < q < 1). We then apply the Proximal Gra-
dient Method to solve a regularized optimization problem with the
new regularization. The convergence analysis shows that the algorithm
converges to a critical point and we also provide a pseudo-code for fast
implementation. In addition, we conduct a simple numerical experiment
with a regularized least square problem to illustrate the performance
of the new regularization.
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1 Introduction

In recent years, sparse models have become popular in many applications
such as signal processing, statistics, and machine learning. To obtain sparsity,
a suitable regularization is applied to the optimization problem. The most
familiar sparsity-inducing regularization is the cardinality function and its
convex-relaxation {;-penalty [8]. Optimization with the {y-penalty can be
unstable due to its intrinsic discontinuity. Meanwhile, the {;-penalty usually
produces biased models because it tends to shrink large-valued parameters
excessively |7]. Furthermore, it only achieves reliable sparse recovery under a
strong condition, namely a low coherent sensing matrix [5].

Lately, there are lines of research focusing on non-convex, continuous and sym-
metric regularizations that are concave on [0, +o00]. Some notable examples
are smoothly clipped absolute deviation [7], the minimax concave penalty [13],
the {4-penalty with 0 < q < 1 [4], and the transformed {;-penalty [9]. Re-
cent developments in the theory of non-convex and non-smooth optimization
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have encouraged practical implementation of non-convex regularization. Re-
cently, Wen et al. [12] provided a list of applications to which non-convex
regularization had been applied, and they showed non-convex regularizations
produce unbiased models which usually achieve better sparse recovery under
relaxed conditions. As illustrated in Figure 1, a potential reason is that the
curves of these non-convex regularizations are bending towards the origin
and the curves become flatter away from the origin. In other words, they
are continuous surrogates which provide a better approximation to the car-
dinality function than the {;-penalty. Furthermore, through the use of a
relative convergence ratio introduced in Section 2, one can also find that
around the origin the {y-penalty has the slowest decay to zero, followed by
the {4-penalty and the {;-penalty. By using these observations as motivation,
we hypothesize that a continuous, non-convex regularization which decreases
to zero slower when approaching the origin can better model the jump of the
cardinality function. To the best of our knowledge, in the current literature,
the £q-penalty (0 < q < 1) has the slowest decaying speed among the existing
non-convex regularizations with good numerical performances. In Section 2,
we therefore introduce a new non-convex and non-smooth regularization which
converges to zero slower than any {4-penalty when approaching the origin.

In Section 3, we use ideas from Marjanovic and Solo [10] to set up an algorithm
which solves regularized optimization problems with the new regularization.
We also provide a convergence analysis and pseudo-code for the algorithm.
Section 4 covers simulations for regularized least square problems with syn-
thetic data. Finally, Section 5 provides a conclusion and suggestions for future
work.
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Figure 1: The graph of penalty pop and its level sets.

2 The new regularization

Let a,b € R,,, where R,, = {x € R: x > 0}. We define the new
regularization pep : R — R by
1
—, X #0,
(X) — J In(ax[7T+1)+b>
Parb 0, x=0.
As shown in Figure 1, the regularization pqp is non-smooth and non-convex
on R. By examining the limit of p,,(x) when [x| approaches zero, one can
verify that the new regularization pqp is continuous. Additionally, if the
scaling parameter a is small, then the gradient of pq1(x) will quickly approach

zero as |x| increases. According to Fan and Li [7], the latter property indicates
that this new regularization will result in a nearly unbiased model.

The new regularization has two notable characteristics. Firstly, pop is sym-
metric around zero and strictly increasing on R, ;. By examining the limit
when x approaches infinity, we find that p,p is bounded between zero and %.
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Secondly, pq,» decreases to zero slower than the {4-penalty for any 0 < q < 1.
To verify this property, we define the following ratio which compares the
convergence rates as |x| approaches zero:

f
Relative Convergence Ratio = lim ﬁ,
K—0 g(x)

where f and g are continuous, non-convex regularization functions with
f(0) = g(0) = 0. If the ratio is positive infinity, then f converges to zero
slower than g around the origin. Next, using this ratio, we deduce that the
new regularization converges to zero slower than the {4-penalty because

Pl
K—0 |x|d K—oln (alx|~"+1)+b
I e
50t In (at—1 + 1) + b
—qt—9!
= lim g

t—0+ tZ -1
— (t + F)

t!—d
~ lim q (tq i _)
t—0+ a

= +oo)

where the third equality follows from the L’Hopital’s rule. As a result, we
expect that this new regularization function gives a better approximation
to the cardinality function than the {; penalty in the literature. We set the
parameter b = 1 in the regularization pq to simplify the parameter tuning
process for the later experiments, and so that the maximum value of pqp
matches with that of the cardinality function. To simplify the notation, we
write pq as the new regularization when b = 1.
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3 The problem and algorithm

In this article, we consider

n
min f(x) +}\;pa(xi)» (1)
where f : R™ — R is continuously differentiable and has a Lipschitz continuous
gradient. Here x; are the ith coordinate of x € R™ for i =1,...,n, and A is
a positive real number. The formulation (1) is a regularized optimization
problem and the property of the cost function f covers a wide range of
applications [12]. To solve the non-smooth non-convex problem (1), we apply
the Proximal Gradient Method (PGM) |2, Chapter 10|, which is a type of
iterative majorization-minimization algorithm.

The majorization step involves finding the upper bound of the objective
function (1). To do this step, we require the following lemma.

Lemma 1. [2, Lemma 5.7] Let f : R™ — R have a Lipschitz-continuous
gradient with Lipschitz constant L > 0 over a given convex set D C R™. Then

L
f(X)<f(y)+Vf(y)T(x—y)+Ellx—sz, for all x,y €D.

Let x®) € R™ be the iterate. Then, we implement Lemma 1 to the cost
function f in problem (1) to obtain the majorized problem:

L n
; (k) (NT (¢ A (k) Tl — ()12 )
min f(x"™) + VEx"™) ' (x —x'™) + 3 Ix —x"™||* + A E_] Palxi) .

In general, it is impractical or computationally expensive to determine the
Lipschitz constant L precisely. Hence, one often uses a constant L, with
Ly > L at each iteration step and this can be achieved by using line search
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techniques. In combination with this information, the majorized problem is
equivalent to

Ly ()12 Zn
7{2]%}1 7”7( —Z Hz + 7\ — pa(xi) ) (2)
where z® is defined by

1
(k) _ (k) (k)
2z = x o v (x™).

The minimization step requires solving problem (2), whose objective function
is separable. Thus, it is sufficient to solve n many one-dimensional problems

L
min —(x — z\)? + Apa(x), (3)
xeR
where zi(k) is the ith coordinate of z®). It can be directly verified that the

objective function in problem (3) is coercive so it has at least one global
minimum. Furthermore, the candidates for the global minimum are the
non-smooth point zero and the stationary points found from

A a .
ol i () i sn(e), 20, 4
9?;)

which is derived from the first order necessary condition, and we refer to zi(k)

as z to simplify the notation. Then, we check the behaviour of g(x)—z, which
is the gradient of the objective function (3) to deduce which candidate is the
global minimum. Further analysis shows that the function g : R\ {0} — R
from (4) is an odd function and g(x) has the same sign as its variable x.
Moreover, g is smooth, strictly convex and has a strictly positive global
minimum over R, ,. Using these properties, one has the following lemma
regarding the solutions of problem (3).
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Lemma 2 (Solution of (3)). Define function g as in (4) and denote

T" = min g(x).

xER 4
Then, there are two cases for the solution of problem (3).
o [f|z| < T*, then zero is the global minimizer of problem (3).

o [f|z| > T*, then equation (4) has two distinct real roots, which are not
zero and have the same signs. The root with larger absolute value is a lo-
cal minimizer of problem (3) while the other root is a local mazimizer. In
addition, the non-smooth point zero is the second local minimizer. Thus,
the global minimizer of problem (3) is one of the two local minimizers
that has the lowest objective function value.

There are some important points to consider before establishing an algorithm
for problem (3). Firstly, the function g from (4) is an odd function. Hence,
instead of solving (4) directly, we solve |z| = g(x) and then set the sign of
roots to be the sign of z because g(x) and x have the same sign. Secondly,
the second point in Lemma 2 indicates it is possible that problem (3) has
two global minimizers with identical function values, and we choose zero in
this case to promote sparsity. Finally, if |z| > T*, then equation |z| = g(x)
has two unique positive roots and we need to estimate the root with larger
absolute value. Since g is smooth over R, ,, we use the bisection method to
ensure convergence. Let x* be the minimizer of g(x) when x € R, . Using
the intermediate value theorem, it follows that x* is inbetween the two roots.
Thus, the first initial point for the bisection method is x* and g(x*) — |z| is
negative. Hence, the second point should be greater than x* and g — |z| has
to be positive at that point.

Algorithm 1 is the Proximal Gradient Algorithm, and Algorithm 2 is the
solution method of problem (3) In Algorithm 2, the first two inputs of
Bisection() are two points which bracket the root and the last input is
the function to which we apply bisection method. Additionally, in our
computation, we choose Ly by using line search.
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Algorithm 1: Proximal Gradient Algorithm.
Set A, a and obj(x) = f(x) + A Y pa(xi); k = 0;
while Stopping condition is not satisfied do
Set Ly >L;
k

x ) = argmin Zlx —zM[E+A Y1 palxi);
xeR"

k=k+1;
end

Algorithm 2: Solution of problem (3).

f(x) = 1 (x —2)* + Apa(x) ;
g(x) = f'(x) + z;

T* =min g(x); x* =argmin g(x) ;
x>0 x>0

if |z| > T* then

Choose x!" > x* such that g(x") —|z| > 0;
y = sign(z) x Bisection(x*, xV, g(x) — |z|);
if f(0) < f(y) then

| y=0;
end
else
| y=0;

end
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3.1 Convergence analysis

In this subsection, we outline how the convergence analysis of the proposed
algorithm is deduced from the existing literature. Firstly, Attouch, Bolte,
and Svaiter [1]| studied the convergence of several gradient-descent methods,
including the PGM in the non-convex and non-smooth setting. In particular,
they introduced the Kurdyka—Fojasiewicz (KL) inequality for the non-smooth
functions and demonstrated that there are many classes of functions that
satisfy such property. Secondly, Attouch, Bolte, and Svaiter |1, Theorem 2.9|
proved that the sequence generated by a numerical method will converge to a
stationary point of the problem given that: the objective function satisfies the
KL property and the sequence satisfies sufficient decrease, relative error and
continuity conditions [1, Page 8 (H1, H2, H3)|. To apply this theorem, we
note that Attouch, Bolte, and Svaiter |1, Section 5| already proved that PGM
produces a sequence that satisfies the sufficient decreasing and relative error
conditions, and the continuity condition is guaranteed because the objective
function (1) is continuous. Thus, we only need to verify that the objective
function (1) satisfies the KL property. Bolte et al. |3, Section 4] deduced that
the KL property is satisfied for non-smooth functions which are definable in
o-minimal structure. In addition, Dries and Speissegger [6] provided several
examples of o-minimal structure and one can directly verify that the objective
function (1) is definable in such structure.

Therefore, applying PGM to problem (1) will generate a sequence {x®}cx of
iterates that converge x¥) — X as k — oo where X is a stationary point of
the problem in the sense of Bolte et al. |3, Definition 2|, and

[e.e]
D I —xM) < o0
k=0

4 Experiment
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4.1 Problem statement and settings

As an illustration for the proposed regularization, we consider the penalized
least square problem

- 2y
min Slly — AXIE+A Y palxi), (5)

i=1

where A is a 75-by-100 standard Gaussian matrix and p, is the new penalty.
To generate a sample vector y, we create a true sparse model x* and set
Yy = Ax* + € where € is a vector of normally distributed error with mean zero
and variance 0.12. Problem (5) is a non-convex problem and PGM globally
converges to a stationary point. Thus, the solution may depend on the location
of the initial point of the iteration. By following suggestion from Mazumder,
Friedman, and Hastie [11], we firstly solve

min Yy — Al + A, Il

which is a {;-regularized least square. Then, we use this {; solution as
the initial iterate for problem (5). Another important setting is the tuning
parameter A which controls the effect of the regularization. In this experiment,
we set A = Ay, , which is chosen by cross-validation with the one-standard-error
rule [8, Section 2.3] to encourage sparsity. There are three criteria to assess
the performance of our regularization: support recovery, {;-norm error and
computational time. Support recovery is the percentage of correct signs that
the solution has. Finally, we do 100 simulations and plot the median of those
criteria.

4.2 Numerical results

This subsection consists of two parts and each part consists of two cases where
we vary s, which is the sparsity of the true model x*.
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Figure 2: Performance of reqularization p, with different values of a. FEach
color represents one of the testing criteria: support recovery, {a-norm error
or computational time, and big dots with stem highlight the best results. The
value of s is the sparsity of the true model.

4.2.1 Performance of regularization p,

The left three graphs in Figure 2 present the case s = 0.75 and they show
that p, performs better when the parameter a is roughly smaller than 102
and that is when the shape of p, is more similar to the cardinality function.
When s = 0.75 the best results for support recovery are nearly one, which
means that the solution almost has the same signs as the true model.

The overall results across all three criteria become worse when the sparsity
of the true model is reduced to s = 0.25. Furthermore, there is no clear
distinction in support recovery and {;-norm error across different values of
the parameter a. However, the computational time has an interesting pattern
when s = 0.25 and we suspect that it is due to instability of the algorithm.
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Figure 3: Performance comparison between reqularization po and €y penalty.
The crosses and diamond denote the results for the {q-penalty when 0 < q <1
and q = 1, respectively. Each colour red, blue and black represents a testing
criteria. The green line denotes performance of p, for the a that give smallest
2-norm error in Figure 2. The value of s is the sparsity of the true model.

In the next part, we compare the performance of the regularization p, with
the {4-penalty for 0 < q < 1. In addition, for comparison we choose the
parameter value a that has the best performance. In this experiment, we
prefer accuracy over computational efficiency so we choose the value a which
gives the smallest £,-norm error and highest support recovery level.

4.2.2 Comparison between p, and {,-penalty for 0 < q <1

In comparison to the outcome for the {;-penalty, the optimal results of p, are
better in terms of support recovery level and £,-norm error criteria. When
s = 0.25, p, requires longer computational times because the one dimensional
sub-problem (3) is non-convex and was solved numerically. However, when
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s = 0.75, the computational times of the new penalty p, and {;-penalty are
not significantly different. We believe it is because the value of s is high and
the £;-result is a good initial iteration for the algorithm.

In comparison to the optimal results for the {4-penalty with 0 < q < 1,
Pq performs similarly in terms of the support recovery level and {;-norm error
criteria. Such similarities also appear in the computational time criteria when
s = 0.75. When we compare the computational time when s = 0.25, the new
regularization has a much longer computational time for some values of a.

5 Conclusion and future works

In summary, we proposed a new regularization and established some of its
properties. We also provided pseudo-code to solve the regularized optimiza-
tion problem (1) and provided a brief convergence analysis for the algorithm.
Finally, we performed numerical experiment for regularized least square prob-
lems with synthetic data, and compared the performance of p,-regularization,
{i-penalty and {4-penalty for 0 < q < 1. As demonstrated by the numerical
experiment, in terms of accuracy and support recovery, the optimization
model with new regularization performs better than the one with {;-penalty.
On the other hand, there is no significant difference in comparison to the case
of {4-penalty.

There are several future directions for this research. Firstly, more high-
dimensional numerical experiments should be conducted. In addition, the
provided pseudo-code is suitable for many cost functions so we can test regular-
ization p, in some other applications. Secondly, Algorithm 2 still needs some
improvements which may speed up the computational time. A stability anal-
ysis is also desirable. Finally, we can study constrained optimization models
using the new regularization poy. In regularized optimization problems, the
boundary parameter b is not considered here because it is influenced by the
tuning parameter A. However, we speculate that the boundary parameter b
may have a more prominent role in constrained optimization problems.
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