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Abstract

A new preconditioning-based parameter-uniform convergence anal-
ysis is presented for one-dimensional singularly perturbed convection-
diffusion problems discretized by an upwind difference scheme on a
Bakhvalov-type mesh. The proof utilizes the classical convergence
principle: uniform stability and uniform consistency imply uniform
convergence, which can only be used after applying an appropriate
preconditioner to the discrete operator.
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1 Introduction
The purpose of this article is to provide a new theoretical analysis for the
one-dimentional singularly perturbed convection-diffusion problem

Lu := −εu ′′−b(x)u ′+c(x)u = f(x) , x ∈ (0, 1) , u(0) = u(1) = 0 , (1)

where ε is a positive perturbation parameter, 0 < ε 6 1 . We assume that
the functions b, c and f are sufficiently smooth, and that

b(x) > β > 0 , c(x) > 0 for x ∈ I := [0, 1] .

When ε is small, the problem (1) is convection-dominated and an exponential
boundary layer typically arises when the flow (presented by the convection
term b(x) > 0) travels towards the boundary. Then, the boundary value
problem (1) has a unique solution u ∈ C2(I) .

Because of the presence of such exponential layers, special numerical methods
are derived to meaningfully resolve the layers and to achieve parameter-robust
convergence (or ε-uniform convergence). The use of layer-adapted meshes,
in conjuntion with either finite-difference or finite-element discretizations,
is one of the most frequently used approaches to achieve the goal. In 1969,
Bakhvalov [1] introduced the first layer-fitted mesh by applying the inverse
of the exponential-layer function into its mesh-generating function. About
two decades later, Shishkin [12] proposed the piecewise-uniform mesh which
received much interest due to its simplicity in construction and analysis.
Nevertheless, as a trade-off, the convergence rate of the Shishkin mesh is
usually sub-optimal compared to that of the Bakhvalov mesh. For further
important concepts and advances in the field of numerical analysis of singular
perturbation problems, we refer the reader to the works by Linß [3], Roos et
al. [11], Roos and Stynes [10], and Stynes [13].
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Even when layer-adapted meshes are used, error analyses of finite-difference
methods for problem (1) are still challenging. This is because the derivatives of
the solution behave like O(ε−k), where k is some positive integer. Furthermore,
the truncation errors of an upwind difference scheme discretized on the
Shishkin mesh are not ε-uniformly consistent, and of order O(ε−1N−1 lnN)
where N is the discretization parameter [6, 14, for numerical observations of
this phenomenon]. Because of these issues, special techniques are devised to
prove ε-uniform convergence for finite-difference methods on layer-adapted
meshes. These include the hybrid-stability approach [4], truncation-error and
barrier functions [7, 8], and the grid transformation [5, Chapter 7]. Recently,
another method developed for proving uniform convergence on the Shishkin
mesh is the preconditioning technique to enable the classical principle: “ε-
uniform stability and ε-uniform consistency imply ε-uniform convergence”.
This idea was first introduced by Vulanović and Nhan [14] and extended
further by Nhan et al. [6] and Vulanović and Nhan [15] to handle hybrid
higher-order finite-difference schemes, but only on the piecewise-uniform
Shishkin mesh.

The goal of this article is to show that it is possible to generalize the
preconditioning-driven analysis to an exponentially graded Bakhvalov-type
mesh. In particular, our motivation comes from the fact that this new ap-
proach has proven its salient advantage over the aforementioned proofs. As
shown by Vulanović and Nhan [15], an almost-third-order difference scheme
can be only analysed by the preconditioning. We emphasise that our intended
contribution is not the main uniform convergence theorem (already proven
by other methods), but rather it is the novel analysis which makes use of
the preconditioning approach for a Bakhvalov-type mesh. Our result might
be employed to analyse more complicated higher-order schemes, similar to
Vulanović and Nhan [15] but on Bakhvalov-type meshes.

In the next section, we describe an upwind discretization on a Bakhvalov-type
mesh. Section 3 introduces an appropriate preconditioner to scale the dis-
cretized system and obtain the ε-uniform stability. Finally, the preconditioned
consistency error is analysed and the uniform convergence result is derived.
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2 Upwind scheme on a Bakhvalov-type mesh
The following decomposition of u is often used in the error analysis of
numerical methods for problem (1) [3, Theorem 3.48]:

u(x) = s(x) + y(x) , (2)

|s(k)(x)| 6 C
(
1+ ε2−k

)
, |y(k)(x)| 6 Cε−ke−βx/ε , x ∈ I , k = 0, 1, 2, 3,

(3)

where C is a positive generic constant independent of ε and N. Moreover, the
layer component y satisfies a homogeneous differential equation:

Ly(x) = 0 , x ∈ (0, 1) . (4)

Let IN denote an arbitrary mesh with mesh points xi, i = 0, 1, . . . ,N, such
that 0 = x0 < x1 < · · · < xN = 1 . Let hi = xi − xi−1 , i = 1, 2, . . . ,N, be the
mesh-step sizes and let hi = (hi+hi+1)/2 . Mesh functions on IN are denoted
by, for example, WN =

(
WN
i

)
, UN =

(
UNi

)
. If g is a function defined on I,

then gi := g(xi) , and gNi := gN(xi) for the corresponding mesh function. We
use the maximum norm of WN,

∥∥WN
∥∥ = max06i6N |WN

i | . The matrix norm
induced by the maximum vector norm is also denoted by ‖ · ‖.

The upwind finite-difference scheme is used to discretize the problem (1)
on IN:

UN0 = 0 , UNN = 0 ,

LNUNi := −εD ′′UNi − biD
+UNi + ciU

N
i = fi , i = 1, 2, . . . ,N− 1, (5)

where

D ′′UNi =
1

hi

(
D+UNi −D−UNi

)
,

D+UNi =
UNi+1 −U

N
i

hi+1
, D−UNi =

UNi −UNi−1
hi

.
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σB0 1

Figure 1: The Bakhvalov-type mesh defined by (6) and (7) for one-dimensional
convection-diffusion problems (1).

We are interested in the Bakhvalov-type mesh introduced by Boglaev [2]:

xi =

{
εφB(ti) , i = 0, 1, . . . , J,

σB + 2(1− σB)(ti − 1/2) , i = J+ 1, J+ 2, . . . ,N,
(6)

with φB(t) := − ln [1− 2(1− ε)t], ti = i/N , J = N/2 , and transition point
defined by

σB := ε ln(1/ε) = xJ . (7)

The mesh, plotted in Figure 1, is gradually graded in the layer region with
hi−1 6 hi , i = 2, . . . , J, and is equally spaced with the step size H := hi ,
i = J+ 1, . . . ,N. This Bakhvalov-type mesh shares the following character-
istics with the original Bakhvalov mesh: a logarithmic function to generate
the points in the layer, and a transition point (7) of the order O(−ε ln ε).
Furthermore, the last mesh step, hJ := ε ln (1+ 2(1− ε)/(εN)), in the layer
region tends to zero as ε→ 0 ; but more slowly than that of the Shishkin-type
meshes (in the sense described by Roos and Linß [9]) due to the logarithmic
factor. This is why the analysis for the Bakhvalov-type meshes is usually
more delicate than the Shishkin-type meshes [8].

Lemma 1. The mesh widths in the layer regions of the Bakhvalov-type mesh
defined by (6) and (7) satisfy

hi−1 6 hi 6 CN
−1 , i = 2, 3, . . . , J, (8)

and in particular
hi 6 ε , i = 1, 2, . . . , J− 1. (9)
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Furthermore,

e−βxJ−1/ε =
(
ε+ 2(1− ε)N−1

)β
6

(
ε+ 2N−1

)β (10)

and
e−βxJ/ε = εβ . (11)

Proof: By the definition of φB(t), we have φ ′B(t) = 2(1−ε)/[1−2(1−ε)t] ,
thus φB(t) is monotonically increasing for t ∈ [0, 1/2] . Therefore, hi−1 6 hi
i = 2, 3, . . . , J− 1, and

hJ = ε

∫ tJ
tJ−1

φ ′B(s) ds 6
ε

N
φ ′B(tJ) =

ε

N
· 2(1− ε)

1− 2(1− ε)tJ
6
ε

N
· 2
ε
= 2N−1 ,

which gives (8).

For the bound in (9), we have

hi = ε

∫ ti
ti−1

φ ′B(s) ds 6
ε

N
max

t∈[ti−1,ti]
φ ′B(t) =

ε

N
· 2(1− ε)

1− 2(1− ε)ti

6
ε

N
· 2

1/(1− ε) − 2tJ−1
6
ε

N
·N = ε .

We use the definitions of xJ−1 in (6) and xJ in (7) to get the inequality (10)
and the equality (11). ♠

When the upwind scheme (5) is discretized on the Bakhvalov-type mesh, the
linear system in matrix form is

ANU
N = fN ,

where AN = [aij] is a tridiagonal matrix with a00 = 1 and aNN = 1 being
the only nonzero elements in the 0th and Nth rows, respectively, and where
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fN = [0, f1, f2, . . . , fN−1, 0]
T . Let the entries of AN be denoted by ai,j, the

nonzero ones being

li := ai−1,i =

{
− ε
hihi

, 1 6 i 6 J ,

− ε
H2 , J+ 1 6 i 6 N− 1 ,

ri := ai,i+1 =


− ε
hihi+1

− bi
hi+1

, 1 6 i 6 J− 1 ,

− ε
hiH

− bi
H
, i = J ,

− ε
H2 −

bi
H
, J+ 1 6 i 6 N− 1 ,

and

di := aii =


1, i = 0 ,

−li − ri + ci , 1 6 i 6 N− 1 ,

1, i = N .

3 Preconditioning and ε-uniform stability
The goal of this section is to precondition the discrete systems (5) in such a
way that the ε-uniform stability is retained; and simultaneously, the modified
consistency errors can be proven to be convergent uniformly in ε.

Let M = diag(m0,m1, . . . ,mN) be a diagonal matrix with the entries

m0 = 1 , mi =
hi

H
, i = 1, . . . , J, and mi = 1 , i = J+ 1, . . . ,N.

(12)
Then, the left-preconditioned system is

ÃNU
N = f̃N , (13)

where ÃN = MAN and f̃N = MfN . The entries of ÃN are denoted by ãij,
and the nonzero ones are

l̃i := ãi,i−1 =

{
− ε
hiH
, 1 6 i 6 J ,

− ε
H2 , J+ 1 6 i 6 N− 1 ,
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r̃i := ãi,i+1 =


− ε
hi+1H

− bihi
hi+1H

, 1 6 i 6 J− 1 ,

− ε
H2 −

bihi
H2 , i = J ,

− ε
H2 −

bi
H
, J+ 1 6 i 6 N− 1 ,

and

d̃i := ãii =


1, i = 0 ,

−l̃i − r̃i + ci
hi
H
, 1 6 i 6 J ,

−l̃i − r̃i + ci , J+ 1 6 i 6 N− 1 ,

1, i = N .

In order to show the ε-uniform stability of the preconditioned discretiza-
tion (13), we need to show that ÃN is an M-matrix. We first derive a
technical lemma that results from the special structure of the Bakhvalov-type
mesh.

Lemma 2. Let β > 2 and ∆i := φB(ti) − φB(ti−1) . Then, there exist a
sufficiently large N0, and a positive constant δ independent of both ε and N,
such that for all N > N0 , we have

Si :=
β

2

(
1+

∆i

∆i+1

)
−

(
1

∆i
−

1

∆i+1

)
> δ > 0 , i = 1, . . . , J− 1. (14)

Proof: From the assumption β > 2 there exists a constant δ > 0 , indepen-
dent of ε and N, such that β/2 > 1+ δ . Then Si, for 1 6 i 6 J− 1 , can be
bounded from below as

Si > (1+ δ)

(
1+

∆i

∆i+1

)
−

(
1

∆i
−

1

∆i+1

)
>

(
1+

∆i

∆i+1
+

1

∆i+1
−
1

∆i

)
+ δ =

∆i∆i+1 + ∆
2
i + ∆i − ∆i+1

∆i∆i+1
+ δ .

The assertion in (14) is proven if we can show that the numerator ∆i∆i+1 +
∆2i + ∆i − ∆i+1 > 0 . By direct computations, we get

∆i = ln
(
1+

1

N/(2(1− ε)) − i

)
= ln(1+ z) ,
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where
z := [N/(2(1− ε)) − i]

−1
. (15)

On the other hand, in a different form

∆i+1 = ln
(
1− 2(1− ε)ti
1− 2(1− ε)ti+1

)
= ln

(
1−

1

N/(2(1− ε)) − i

)−1

= ln
(

1

1− z

)
.

Then,

∆i∆i+1 + ∆
2
i + ∆i − ∆i+1 = ln(1+ z)

(
ln
1+ z

1− z
+ 1

)
+ ln(1− z) =: g(z).

The function g(z) is defined for z ∈ (−1, 1) . Its two roots are z∗ := 0 and
an irrational one denoted by z∗. We investigate g(z) numerically on the
interval [0, 0.98] using Maple—a computer algebra system—and its graph
on this interval is plotted in Figure 2 which shows g(z) > 0 for all values
of z in between its two roots, z∗ and z∗. Additionally, the second root z∗ is
numerically approximated as z∗ ≈ 0.971 .

We now show that for each ε there exists a sufficiently large N such that
g(z) > 0 . That is, by the definition (15) of z, the lower and upper bounds
of z are

0 <
1

N/(2(1− ε))
6 z 6

1

N/(2(1− ε)) − (J− 1)

=
1

N/(2(1− ε)) − (N/2− 1)
=

1

1+ N
2

(
1
1−ε

− 1
)

6
1

1+N0η
< z∗ ,

with η := 1
2

(
1
1−ε

− 1
)
. We can choose a sufficiently large integer N0 to

guarantee that 1
1+N0η

6 0.971 < z∗ because η > 0 for all ε < 1 . ♠



3 Preconditioning and ε-uniform stability C155

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

z

0

0.05

0.1

0.15

0.2

0.25

0.3
g

(z
)

g(z)

Figure 2: Graph of the function g(z) for z ∈ [0, 0.98] .

Remark 3. In Lemma 2, the technical assumption β > 2 can be relaxed to
β > 0 by having a user-chosen positive parameter a in the definition of the
graded mesh points xi in (6); that is, set xi = aεφB(ti) for i = 0, 1, . . . , J.

Lemma 4. Under the assumptions of Lemma 2 , the matrix ÃN of the
system (13) satisfies

∥∥Ã−1
N

∥∥ 6 C .

Proof: We only outline the essential calculation here. The detailed proof
can be found elsewhere [6, 14, 15]. We construct a vector v = [v0, v1, . . . , vN]

T

with elements

vi = α−Hi+ λmin{(1+ ρ)J−i, 1} , i = 0, 1, . . . ,N,

where α and λ are appropriately chosen positive constants and ρ = βH/ε .
The following argument is to prove the condition: l̃ivi−1 + d̃ivi + r̃ivi+1 > δ∗ ,
i = 1, 2, . . . ,N − 1, where δ∗ is a positive constant independent of both
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ε and N. Firstly, for i = 1, . . . , J− 1, we have

l̃ivi−1 + d̃ivi + r̃ivi+1 =
hi

H
civi −

ε

hi
+

ε

hi+1
+
bihi

hi+1

> −

(
ε

hi
−

ε

hi+1

)
+
bi

2
+
bihi

2hi+1

= Si > δ > 0 ,

by Lemma 2. Secondly, when i = J ,

l̃JvJ−1 + d̃JvJ + r̃JvJ+1 =
hJ

H
cJvJ + l̃JH− r̃J

(
H+

λρ

1+ ρ

)
> −r̃J

λρ

1+ ρ
+
(
l̃J − r̃J

)
H

>

(
2ε+ bJ(hJ +H)

2H2

)
λβH

ε+ βH
−
ε

hJ
+
bJ

2

>
λβ

2H
−
ε

hJ
+
β

2
>
β

2
,

provided
λβ

2H
−
ε

hJ
> 0 .

We bound hJ from below as follows:

hJ = ε

∫ tJ
tJ−1

φ ′B(s)ds >
ε

N
φ ′B(tJ−1) =

ε

N

2(1− ε)

1− 2(1− ε)tJ−1
>
2ε(1− ε∗)

N
,

where 0 < ε 6 ε∗ < 1 . Therefore,

λβ

2H
−
ε

hJ
>
λβ

2H
−

εN

2ε(1− ε∗)
=
λβN

4
−

N

2(1− ε∗)

> N

(
λβ

4
−

1

2(1− ε∗)

)
> 0 ,
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where we use N−1 6 H 6 2N−1 , and we choose λ > 2
β(1−ε∗)

. Finally, when
i = J+ 1, . . . ,N− 1, we have

l̃ivi−1 + d̃ivi + r̃ivi+1 = civi + l̃iH− r̃iH+ l̃i

[
λ

(1+ ρ)i−1−J
−

λ

(1+ ρ)i−J

]
+ r̃i

[
λ

(1+ ρ)i+1−J
−

λ

(1+ ρ)i−J

]
> bi +

λ

(1+ ρ)i+1−J
[
r̃i − r̃i(1+ ρ) + l̃i(1+ ρ)

2

− l̃i(1+ ρ)
]

= bi +
λρ

(1+ ρ)i+1−J
[
l̃i − r̃i + l̃iρ

]
> β+

λρ

(1+ ρ)i+1−J

[
bi

H
−
β

H

]
> β .

By choosing δ∗ = min{δ, β/2} we complete the proof. ♠

4 ε-uniform consistency and convergence
Let τi[g] = LNgi − (Lg)i , i = 1, 2, . . . ,N − 1, for any C2(I)-function g. In
particular, τi[u] is the truncation error of the finite-difference operator LN
and

τi[u] = LNui − LNUNi = LN(u−UN)i = [AN(u
N −UN)]i , (16)

whereas the preconditioned consistency error is

τ̃i[u] =

hiHτi[u] , i = 1, . . . , J,

τi[u] , i = J+ 1 , . . . ,N− 1.

By Taylor’s expansion

|τi[u]| 6 Chi+1(ε‖u ′′′‖i + ‖u ′′‖i) , (17)
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where ‖g‖i := maxxi−16x6xi+1
|g(x)| for any g ∈ C(I) .

Theorem 5. Let β > 2 . The preconditioned consistency error τ̃i[u] is
bounded uniformly in ε: |τ̃i[u]| 6 CN−1 , i = 1, . . . ,N− 1.

Proof: We use the decomposition (2) to get

τ̃i[u] = τ̃i[s] + τ̃i[y] , i = 1, . . . ,N− 1,

and the estimates (3) to bound the terms on the right hand side separately.
For the smooth part of the solution, |τ̃i[s]| 6 CN−1 , 1 6 i 6 N − 1 , due
to (8) and H 6 2N−1 . Then, for the singular component, we need to show
that |τ̃i[y]| 6 CN−1 , i = 1, . . . ,N− 1.

We divide the proof into cases regarding the indices i. For i > J + 1 , we
apply (17) to y and use the derivative estimate (3). Then,

|τ̃i[y]| = |τi[y]| 6 Chi+1 (ε‖y ′′′‖i + ‖y ′′‖i) 6 CN−1ε−2e−βxJ/ε 6 CN−1 ,

(18)
where use (11) and β > 2 in the last inequality.

For i = J , we have |τ̃J[y]| =
hJ
H
|τJ[y]| 6 C |τJ[y]| , so we bound |τJ[y]| directly by

considering two cases: ε 6 N−1 and ε > N−1. First, when i = J and ε 6 N−1

we use the truncation error estimate in the form of τi[y] = LNy , which is
valid because of (4). Thus, we have

|τi[y]| 6 Pi +Qi + Ri , Pi = ε|D
′′yi| , Qi = bi|D

′yi| , and Ri = ci|yi| .

We bound PJ from above as follows. Since hJ > hJ+1/2 > CN−1 , we get
h
−1

J 6 CN and invoking (10),

PJ 6 Ch
−1

J e
−βxJ−1/ε 6 CN

(
ε+ 2N−1

)β
6 CN−1 . (19)

Analogous arguments can be applied to QJ and RJ to imply that |τJ[y]| 6
CN−1 .
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Second, when i = J and ε > N−1 we get that hJ 6 Cε because of (8).
Therefore, similarly to (18),

|τJ[y]| 6 CN
−1ε−2e−βxJ−1/ε 6 CN−1ε−2e−βxJ/ε 6 CN−1 .

For i 6 J− 1 we prove that

|τ̃i[u]| 6 CN
−1 when


i 6 J− 2 ,

i = J− 1 and hJ 6 ε ,

i = J− 1 and hJ > ε .

(20)

We first prove the first two cases of (20). For i 6 J−1 we have hi 6 ε because
of (9) and hJ 6 ε by the assumption. Hence,

|τ̃i[y]| 6 C
hi

H
hi+1 (ε‖y ′′′‖i + ‖y ′′‖i) 6 N−1 [εφ ′B(ti+1)]

2 (
ε−2e−βxi−1/ε

)
6 CN−1 [φ ′B(ti+1)]

2
e−βxi+1/ε 6 CN−1 [1− 2(1− ε)ti+1]

β−2 6 CN−1 .

Lastly, when i = J− 1 and hJ > ε , this means that max{ε, hJ} = hJ . Then,
ε 6 CN−1, again because of (8), and similarly to (19) we use (10) to get

|τ̃J−1[y]| 6 C
hJ−1

H
(PJ−1 +QJ−1 + RJ−1)

6 C
hJ−1

H

[
1

hJ−1
ε · 2‖y ′‖J−1 +

1

hJ
‖y‖J−1 + e−βxJ−2/ε

]
6 CNe−βxJ−2/ε 6 CNe−βxJ−1/ε 6 CN

(
ε+ 2N−1

)β
6 CN−1.

♠

Combining Lemma 4 (ε-uniform stability) and Theorem 5 (ε-uniform consis-
tency), we arrive the uniform convergence result.

Theorem 6. On the Bakhvalov-type mesh defined in (6) and (7), the upwind
difference scheme applied to the problem (1) is first-order uniformly convergent:∣∣ui −UNi ∣∣ 6 CN−1, 0 6 i 6 N .
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