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Abstract

We present an efficient Bayesian algorithm for identifying the shape
of an object from noisy far field data. The data is obtained by illumi-
nating the object with one or more incident waves. Bayes’ theorem
provides a framework to find a posterior distribution of the parameters
that determine the shape of the scatterer. We compute the distribution
using the Markov Chain Monte Carlo (mcmc) method with a Gibbs
sampler. The principal novelty of this work is to replace the forward
far-field-ansatz wave model (in an unbounded region) in the mcmc
sampling with a neural-network-based surrogate that is hundreds of
times faster to evaluate. We demonstrate the accuracy and efficiency of
our algorithm by constructing the distributions, medians and confidence
intervals of non-convex shapes using a Gaussian random circle prior.
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1 Introduction
We present an efficient Bayesian algorithm for solving the inverse problem of
identifying the shape of a two-dimensional object using far field data obtained
by illuminating the object with one or more plane waves. Our algorithm
reconstructs the shape of the object in the form of a high-dimensional data-
based probability distribution and this probability distribution is interpreted
by Markov Chain Monte Carlo sampling. The key to the efficiency of our
algorithm is to perform the sampling using a feed-forward neural network
surrogate for the wave scattering model, which is constructed offline and can
subsequently be evaluated online much faster than the full wave scattering
model itself.

The far-field-data-based inverse problem considered in this article is a classical
one and has been investigated by several authors, especially since the devel-
opment, in recent decades, of high-order algorithms to solve the associated
forward wave propagation model. In particular, we refer to the celebrated
book by Colton and Kress [2] for the extensive developments, over decades, of
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both the theory and computational methods from a wave scattering modeling
perspective, including existence and uniqueness results.

The computational methods for the far-field-data-based inverse problem are
mainly based on formulating the problem as a deterministic nonlinear equation
and applying iterative methods, or constructing and sampling particular
indicator functions for the shape [2]. These computational approaches typically
provide deterministic approximate solutions to inverse problems with noisy
data. In this work we take the novel approach of using Bayesian inversion to
determine probability distributions for the shape of the object by modeling
uncertainties in the observed far field data.

Bayesian algorithms have been established for inverse problems of partial
differential equations (pdes) posed on bounded domains [12], but they have
not been widely applied to the inverse problems in scattering theory modeled
by pdes posed on unbounded regions. Recent articles [4, 7, 10] (and related
references) extended the Bayesian framework to a class of unbounded region
wave propagation inverse models. The limited literature for this inverse
problem is probably due to the enormous computational challenge; Bayesian
algorithms typically require a very large number of evaluations of the for-
ward model to sample the high-dimensional posterior distribution, and wave
scattering models are notoriously expensive to evaluate. In this work we
address that issue by replacing—in the sampling of the posterior—the wave
scattering model by a feed-forward neural-network-based surrogate model.
Neural network (nn) based approximations to physics informed (pi) processes
are of substantial recent interest [11].

For pde based pinn-type modeling [11], the unknown in the pde is ap-
proximated by a nn and the approximation is computed by minimizing a
loss-function (lf) that is designed by the constraint to match the known infor-
mation in the pde with the unknown parts of the pde. The pinn-lf requires
application of the governing pde operator and given constraints (such as the
boundary condition) on the nn, and the final approximation is obtained using
optimization techniques to minimize the pinn-lf. A symbolic representation
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of the function that measures accuracy is crucial for the optimization process
in nn computations to ensure the validity of the nn approximations. The
minimization of the pinn-lf process is the most expensive part of the pinn
and for the pde models the main approach is to apply automatic differentia-
tion (ad) methods to evaluate the pde operator at large sampled locations
in the pde domain. Avoiding the ad and symbolic setup of the pinn-lf
remains a challenging problem to ensure the efficiency of computing the nn
approximations, compared to standard numerical approximations such as
using the finite element approximations based on the variational formulation
of the pde that involves domain integral operators.

The investigated pinn-type modeling, with ad-based lf setup with sampling
in the pde domain, is not practical for the wave inverse problems considered
in this article because the far field data is modeled using the homogeneous
Helmholtz pde posed on an unbounded region in R2. Using the fundamental
solution of the Helmholtz pde operator and an integral ansatz of the scattered
field (that involves only unknowns on the boundary of the scatterer) the
problem can be reduced to boundary integral equations (bies) posed only
on the boundary of the scatterer [2]. The bie operator (involving certain-
types of singular integrals) cannot be evaluated symbolically for non-trivial
scatterer shapes and hence the current pinn-type approaches are not practical,
even for the part of the forward Helmholtz model considered in this article.
Accordingly, we avoid such pinn-type variants in this article and, instead, we
use our nn only as a surrogate, which we construct offline using a supervised
training regime in which the nn is passed training data obtained from the bie.
The amount of training data required is less dimension-sensitive than for other
polynomial based surrogate models that we developed for low-dimensional
parameter models [4, 7].

In Section 2 we present the wave scattering forward model and in Section 3
we briefly describe a bie reformulation of the model and discretisation. In
Section 4 we describe the hierarchical Bayesian inversion method, and in
Section 5 we describe our nn-based surrogate model. Numerical results in
Section 6 demonstrate the effectiveness and efficiency of our approach.
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2 Wave scattering forward model
We consider the interaction of a time harmonic incident plane wave

ui(x) = eikx·d̂ (1)

with a two dimensional sound-soft scatterer D ⊆ R2 . Here k = 2π/λ is the
wavenumber and the unit vector d̂ is the direction of propagation of the plane
wave. We assume that the wavelength λ of the incident wave is of the same
order as the diameter of the scatterer.

The interaction of the incident wave with the scatterer induces a scattered
wave u, which satisfies the Helmholtz equation exterior to the closure D of D,

∆u+ k2u = 0 , x ∈ R2 \D , (2)

and the Sommerfeld radiation condition (src) [2, equation (3.108)]. The
sound-soft characteristic of the scatterer implies that the total field u + ui

vanishes on the boundary ∂D of D [2], leading to the Dirichlet boundary
condition

u(x) + ui(x) = 0 , x ∈ ∂D , (3)

where ui is the incident plane wave (1).

Using the src, the radiating scattered field is decomposed as

u(x) =
eik|x|√
|x|

[
u∞(x̂) +O

(
1

|x|

)]
, x̂ =

x

|x|
∈ ∂B , (4)

where ∂B denotes the unit circle, and the distance-independent function u∞(x̂)
is known as the far field of D. In practical experiments the typical quantity
of interest, measured at relatively long distances from the scatterer, is the
acoustic cross section of D,

σ(x̂) = |u∞(x̂)|2 , x̂ ∈ ∂B . (5)
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For a given incident direction d̂ and scatterer D, the forward problem is to
compute the scattered field u that satisfies the scattering problem (2)–(3)
with the src, and the associated acoustic cross section. In this work we are
interested in solving the corresponding inverse problem of computing the
scatterer shape D from acoustic cross section data. To that end we assume
that D is star shaped (without loss of generality with star-centre at the origin)
and we parametrise the boundary curve ∂D using the local polar coordinates
representation

x(θ) = r(θ) x̂(θ) , θ ∈ [0, 2π) , (6)

where x̂(θ) = (cos θ, sin θ) . We assume that the radius r(θ) > 0 , and it is
therefore convenient to express the radius in the form

r(θ) = r0 e
s(θ) , θ ∈ [0, 2π) , (7)

where r0 is a constant whose value we assign in Section 4. We parametrise
the log-radius s(θ) as

s(θ) =

N∑
j=0

aj cos jθ+
N∑
j=1

bj sin jθ , θ ∈ [0, 2π) , (8)

where a0, . . . , aN and b1, . . . , bN are unknown parameters to be determined
from the acoustic cross section data.

3 BIE reformulation and discretisation
Given a scatterer D with known parametrisation (6)–(8), we solve the forward
problem (2)–(3) using a combined field ansatz [2]

u(x) =

∫
∂D

[
∂G

∂n(y)
(x,y) − ikG(x,y)

]
φ(y)ds(y) , x ∈ R2 \D , (9)

which satisfies the Helmholtz pde (2) and the src. Here G(x,y) is the
free space Green’s function for the two-dimensional Helmholtz equation [2,
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Section 3.5] and n(y) is the unit outward normal to ∂D at y. Taking the
limit of (9) as x approaches ∂D using the jump relations for the single- and
double-layer potentials [2, Theorem 3.1], and forcing the ansatz (9) to satisfy
the boundary condition (3) shows that the unknown boundary density φ
in (9) should be the solution of the second kind bie [2]

φ(x) + 2

∫
∂D

[
∂G

∂n(y)
(x,y) − ikG(x,y)

]
φ(y)ds(y) = −2ui(x) , x ∈ ∂D .

(10)
This combined field integral equation (cfie) has a unique solution for all
wavenumbers k ∈ R [2]. Once the solution φ of the cfie (10) is obtained,
applying the ansatz (9), the corresponding far field is computed using

u∞(x̂) =
eiπ/4√
8πk

∫
∂D

[
∂e−ikx̂·y

∂n(y)
− ike−ikx̂·y

]
φ(y)ds(y) , x̂ ∈ ∂B . (11)

In this work we compute high-order approximate solutions of (10) using
efficient implementations from our open-source software [5] for both smooth
and non-smooth curves ∂D. In particular, for the Nyström method [2] used
by Ganesh and Hawkins [5] for smooth curves, the discretised form of the
bie (10) is a linear system

Ax = b , (12)

where the matrix A is the discretisation of the integral operators on the left
hand side of (10), the vector b is the discretisation of the right hand side, and
x is a vector whose entries approximate the values of φ at the discretisation
points. Since the integral operator depends on the scatterer boundary ∂D,
the matrix A must be recomputed if the boundary ∂D is changed.

4 Hierarchical Bayesian model
In the remainder of the article we consider the acoustic cross section σ
associated with the solution u of (2)–(3) as a function of the parameters
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associated with the boundary parametrisation (6)–(8). To precisely define
the inverse problem we introduce the nonlinear operator F : R2N+1 → C(∂B) ,

F(ω) = σ ,

where ω = (a0, . . . , aN, b1, . . . , bN) ∈ R2N+1 parametrises ∂D via (6)–(8) and
σ is computed using (5) from the solution u of (2)–(3). That is, the forward
model operator F maps a parametrized scatterer to the acoustic cross section
(induced by the incident wave impinging on the scatterer). In this article, our
focus is on the inverse problem: Find ω such that

F(ω) = f̂ , (13)

for given noisy acoustic cross section data f̂ ∈ C(∂B) . Later we focus on the
particular practically important case where (13) is required to hold only for
the acoustic cross section evaluated in a discrete subset of ∂B, comprising a
finite number of measurement direction points.

Our approach is to model the parameters ω as a multivariate random variable
in a probability space Ω0 with prior probability distribution π0. The proba-
bility space and associated probability distribution are chosen to encapsulate
all available knowledge of the scatterer D, and we give a concrete example
in Section 5. The expected value of a function f(ω) with respect to the
probability distribution π0 is

E[f] =
∫
Ω0

f(ω)dπ0(ω) . (14)

The Monte Carlo approximation to E[f] is

Em[f] =
1

m

m∑
k=1

f(ωk) , (15)

where ω1, . . . ,ωm are m independent samples of ω.
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We assume that the noise in the data is random. The data is

f̂ = f+ η , (16)

where f is in the range of F and the noise η has probability distribution π. Then
Bayes’ theorem provides a data-conditioned posterior probability distribution
πf̂(ω, σ) for (ω, σ) satisfying

πf̂(ω, σ) ∝ π(f̂− F(ω)|σ)π0(ω)π1(σ) . (17)

The constant of proportionality in (17) normalises πf̂ but is not required when
the posterior distribution is sampled using a Markov Chain Monte Carlo
(mcmc) method. In this work we sample the posterior distribution (17) by
mcmc method using the Gibbs algorithm because it readily provides marginal
posterior probability distributions for each of the parameters in ω.

In practice we discretise (13) by requiring it to hold for Nθ equally spaced
points x̂(θ) corresponding to discrete angles θ = θ1, . . . , θNθ . Accordingly f̂
reduces to a vector and η reduces to a multivariate random variable. We
assume that the components of η have identical Gaussian distributions with
variance σ2, where σ is a random variable with probability distribution π1.

5 Neural-network-based surrogate model
For the parameter prior π0(ω) in (17) we make use of a class of random
particles that have been well studied in the literature [6, 8, 9, 13] and utilised
as models of atmospheric particles such as ice and dust. In particular, we
assign to the coefficients in (8) the distributions aj, bj ∼ N(0, δ2k) with

δj =


a , for j = 0 ,
0 , for j = 1 ,
αj−ν , for j > 2 ,

(18)

where a = log(10)/10 . Here ν acts as a regularisation parameter that controls
the smoothness of the particle boundary and α is a normalisation parameter
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chosen so that
N∑
j=2

δ2j = δ
2 , δ2 = log(1+ σ)2 ,

where σ2 determines the variance of the radius of the particles. Thus the
prior π0 involves parametrising ∂D using d = 2N− 1 stochastic dimensions.

We set the scaling parameter r0 = 1/
√
1+ σ2 in (7) and, following arguments

by Ganesh and Hawkins [6], the radius of ∂D has mean E[r(θ)] = ea2/2 = eδ20/2 ,
and covariance

Cov[r(θ1), r(θ2)] = eCov[s(θ1),s(θ2)] − eδ
2
0 ,

where

Cov[s(θ1), s(θ2)] = δ20 +
N∑
j=0

δ2j cos j(θ1 − θ2) .

Each sample of the posterior (17) using the Gibbs sampler requires hundreds
of evaluations of the forward model F(ω) for each of the d+ 1 dimensions of
(ω, σ). Here the forward model requires assembly and solution of the linear
system (12), and we show in Section 6 that the cpu time is unfeasibly large
to sample directly using the full forward model.

In previous works for d 6 4 we accelerated the mcmc sampling by replacing
the full forward model with a cheap-to-compute surrogate model based on
an approximation of F(ω) using degree L polynomials [4, 7]. In this work,
motivated by the challenges of using polynomial-based surrogates for problems
with high stochastic dimension, we develop a neural-network-based surrogate

F(ω) ≈ QML
M (ω) . (19)

The surrogate model QML
M is computed by a feed-forward neural network with

a hidden layer of size Nθ. The activation function for the hidden layer is
the hyperbolic-tangent sigmoid function, and the activation function for the
output layer is linear. We train the neural network using training data

(ωm, F(ωm)) , m = 1, . . . ,M , (20)
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where ω1, . . . ,ωM are M independent samples from the prior π0. The
neural network is trained using the Levenberg–Marquardt algorithm in the
Matlab (2017b) Neural Network Toolbox (the train function).

6 Numerical results
We demonstrate our Bayesian nn (bnn) surrogate algorithm with noisy test
data obtained by simulating far fields from two smooth non-convex shapes
and a non-smooth scatterer: a trefoil, a pinched ball and a square. The
smooth case simulations use the bie Nyström method discussed in Section 3,
but we avoid the ‘inverse crime’ by using a different parametrisation of the
shapes than can be obtained using (6)–(8). The simulation for the square
case uses the T-matrix computed using tmatrom [5]. In all our experiments
we use parametrisations with order N = 6 and stochastic dimension d = 11
and, except where stated otherwise, we fix the wavenumber k = π with
corresponding wavelength λ = 2 , so that the scatterers are approximately
one wavelength in diameter.

To improve the reconstructions we generalise the forward model in Section 4
by combining data from four plane waves with incident directions d̂ =
±(1, 0),±(0, 1) . The implementation of the Bayesian algorithm and the
surrogate models is identical. For each incident wave we measure the acoustic
cross section at Nθ equally spaced angles, so that our total data dimension
is 4Nθ. Except where stated otherwise we fix Nθ = 12 and our total data
dimension is 48. We generate corresponding noisy data by adding Gaussian
noise with standard deviation two percent of the maximum data value.

In Table 1 we demonstrate the performance of our bnn surrogate model with
respect to the amount of training data by tabulating the cpu time for gener-
ating the training data, the cpu time for training the model, and the relative
error in the surrogate model. For fair comparison with the non-surrogate
version of the model, in our numerical experiments we avoided parallelization
of the training data generation. Matlab automatically parallelises the nn
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Table 1: cpu time and relative error for the nn surrogate, with training
data size M.

M cpu fun. (s) cpu train. (s) rel. error (ρ1000)
200 10.5 68.5 2.3× 10−1
400 20.6 133.3 1.9× 10−1

training. The cpu times in this section are obtained using a a four-core
2.6GHz Intel i7 cpu. In contrast to the typical nn framework, the domain
for our surrogate model is the (unbounded) set of outcomes in the probability
space associated with the prior, and it is appropriate and robust to measure
the error in the norm induced by the probability measure at a larger number
(m >M) of samples than the training data size M in (20). Accordingly, we
estimate the relative error in the surrogate modelQ(ω) using the Monte Carlo
method,

ρm =

√√√√ 1
m

∑m
j=1 (F(ωj) −Q(ωj))

2

1
m

∑m
j=1 (F(ωj))

2
,

where ω1, . . . ,ωm are m independent samples of the prior distribution.

In Figure 1 we visualise the computed posterior distributions for our three
shapes by plotting the median of 10 000 samples and indicating the 95.45%
confidence interval. The cpu time required for drawing 10 000 samples with
the M = 400 neural network is about 23 minutes; the estimated cpu time
required for the 10 000 samples using the full wave scattering bie model would
be more than 80 days.

The non-smooth square geometry demonstrates the capability of our algorithm
to identify challenging shapes. This shape is challenging because it is not
in the set of smooth particles described by the prior in Section 5, and sub-
wavelength features like the corners are difficult to resolve because of the
uncertainty principle [1]. In Figure 2 we demonstrate that using more data
(larger Nθ) and using higher frequency incident waves can both improve the
reconstruction of the square shape.
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trefoil pinched ball square

Figure 1: Reconstructions of various shapes using wavelength λ = 2 and
Nθ = 12 . The true shapes (black lines) and visualisations of the corresponding
computed posterior distributions (17) showing the median (red line) and the
95.45% confidence interval (shading). The posterior is computed using the
neural-network-based surrogate with training data of length M = 400 .

standard
(λ = 2 , Nθ = 12)

more data
(λ = 2 , Nθ = 24)

higher frequency
(λ = 0.5 , Nθ = 12)

Figure 2: Reconstructions of the square using more data or higher frequency.
The true shapes (black lines) and visualisations of the corresponding computed
posterior distributions (17) showing the median (red line) and the 95.45%
confidence interval (shading). The posterior is computed using the neural-
network-based surrogate with training data of length M = 400 .
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7 Conclusion
We have computationally explored the advantages of using nn-based approxi-
mations, within the Bayesian setting, to efficiently solve a two dimensional (2D)
inverse wave propagation model in an unbounded region exterior to a scatterer.
The standard Bayesian framework for the inverse model requires simulation
of a large number of forward wave problems in the unbounded region and
hence, in general, is computationally prohibitive. We have demonstrated that
our Bayesian nn surrogate algorithm facilitates massive reduction in the CPU
time, thereby making such simulations practical. Our approach provides a
framework for future extension to the three dimensional (3D) problem, and
the scalability depends on a similar surrogate for the 3D forward model, using
algorithms and software such as those developed by Ganesh and Hawkins [5,
7].

A theoretical understanding of nn approximations in the context of real-world
model simulations is an open problem. A basic theoretical framework for the
future development of numerical analysis for pde-based models can be found
in the recent survey by DeVore et al. [3] and references therein. Such analysis
needs to be first developed for forward pde models on bounded domains,
based on substantial pinn-based computational results observed in recent
years. Future nn-based computational developments for unbounded regions
will be needed to extend the numerical analysis to inverse models such as
those considered in this article.

References
[1] Y. Chen. “Inverse scattering via Heisenberg’s uncertainty principle”. In:

Inv. Prob. 13 (1997), pp. 253–282. doi:
10.1088/0266-5611/13/2/005 (cit. on p. C123).

[2] D. Colton and R. Kress. Inverse acoustic and electromagnetic
scattering theory. 4th Edition. Vol. 93. Applied Mathematical Sciences.

https://doi.org/10.1088/0266-5611/13/2/005


References C126

Springer, 2019. doi: 10.1007/978-3-030-30351-8 (cit. on pp. C113,
C114, C115, C116, C117, C118).

[3] R. DeVore, B. Hanin, and G. Petrova. “Neural Network
Approximation”. In: Acta Num. 30 (2021), pp. 327–444. doi:
10.1017/S0962492921000052 (cit. on p. C125).

[4] M. Ganesh and S. C. Hawkins. “A reduced-order-model Bayesian
obstacle detection algorithm”. In: 2018 MATRIX Annals. Ed. by
J. de Gier et al. Springer, 2020, pp. 17–27. doi:
10.1007/978-3-030-38230-8_2 (cit. on pp. C114, C115, C121).

[5] M. Ganesh and S. C. Hawkins. “Algorithm 975: TMATROM—A
T-matrix reduced order model software”. In: ACM Trans. Math. Softw.
44.9 (2017), pp. 1–18. doi: 10.1145/3054945 (cit. on pp. C118, C122,
C125).

[6] M. Ganesh and S. C. Hawkins. “Scattering by stochastic boundaries:
hybrid low- and high-order quantification algorithms”. In: ANZIAM J.
56 (2016), pp. C312–C338. doi: 10.21914/anziamj.v56i0.9313
(cit. on pp. C120, C121).

[7] M. Ganesh, S. C. Hawkins, and D. Volkov. “An efficient algorithm for a
class of stochastic forward and inverse Maxwell models in R3”. In: J.
Comput. Phys. 398 (2019), p. 108881. doi:
10.1016/j.jcp.2019.108881 (cit. on pp. C114, C115, C121, C125).

[8] L. Lamberg, K. Muinonen, J. Ylönen, and K. Lumme. “Spectral
estimation of Gaussian random circles and spheres”. In: J. Comput.
Appl. Math. 136 (2001), pp. 109–121. doi:
10.1016/S0377-0427(00)00578-1 (cit. on p. C120).

[9] T. Nousiainen and G. M. McFarquhar. “Light scattering by
quasi-spherical ice crystals”. In: J. Atmos. Sci. 61 (2004),
pp. 2229–2248. doi:
10.1175/1520-0469(2004)061<2229:LSBQIC>2.0.CO;2 (cit. on
p. C120).

https://doi.org/10.1007/978-3-030-30351-8
https://doi.org/10.1017/S0962492921000052
https://doi.org/10.1007/978-3-030-38230-8_2
https://doi.org/10.1145/3054945
https://doi.org/10.21914/anziamj.v56i0.9313
https://doi.org/10.1016/j.jcp.2019.108881
https://doi.org/10.1016/S0377-0427(00)00578-1
https://doi.org/10.1175/1520-0469(2004)061<2229:LSBQIC>2.0.CO;2


References C127

[10] A. Palafox, M. A. Capistrán, and J. A. Christen. “Point cloud-based
scatterer approximation and affine invariant sampling in the inverse
scattering problem”. In: Math. Meth. Appl. Sci. 40 (2017),
pp. 3393–3403. doi: 10.1002/mma.4056 (cit. on p. C114).

[11] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations”. In:
J. Comput. Phys. 378 (2019), pp. 686–707. doi:
10.1016/j.jcp.2018.10.045 (cit. on p. C114).

[12] A. C. Stuart. “Inverse problems: A Bayesian perspective”. In: Acta
Numer. 19 (2010), pp. 451–559. doi: 10.1017/S0962492910000061
(cit. on p. C114).

[13] B. Veihelmann, T. Nousiainen, M. Kahnert, and W. J. van der Zande.
“Light scattering by small feldspar particles simulated using the
Gaussian random sphere geometry”. In: J. Quant. Spectro. Rad. Trans.
100 (2006), pp. 393–405. doi: 10.1016/j.jqsrt.2005.11.053 (cit. on
p. C120).

Author addresses

1. M. Ganesh, Department of Applied Mathematics and Statistics,
Colorado School of Mines, USA.

2. S. C. Hawkins, School of Mathematical and Physical Sciences,
Macquarie University, NSW 2109, Australia.
mailto:stuart.hawkins@mq.edu.au

3. N. Kordzakhia, School of Mathematical and Physical Sciences,
Macquarie University, NSW 2109, Australia.

4. S. Unicomb, School of Mathematical and Physical Sciences,
Macquarie University, NSW 2109, Australia.

https://doi.org/10.1002/mma.4056
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1017/S0962492910000061
https://doi.org/10.1016/j.jqsrt.2005.11.053
mailto:stuart.hawkins@mq.edu.au

	Introduction
	Wave scattering forward model
	BIE reformulation and discretisation
	Hierarchical Bayesian model
	Neural-network-based surrogate model
	Numerical results
	Conclusion

