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Abstract

The projection method was first introduced by Chorin [Bull. AMS
73 (1967), pp. 928–931] and Temam [Arch. Rat. Mech. Anal. 33
(1969), pp. 377–385] as a computationally efficient numerical method to
solve the incompressible Navier–Stokes equations. Despite its success
in decoupling the computations of velocity and pressure, it suffers from
inaccurate numerical boundary layers. As an effort to resolve this
inaccuracy, E and Liu [Int. J. Numer. Meth. Fluids 34 (2000), pp.
701–710] proposed the gauge method, which is a reformulation of the
Navier–Stokes equations in terms of an auxiliary vector field and a gauge
variable. This method utilizes the freedom of choosing a boundary
condition for the gauge variable to reduce the numerical coupling
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between the considered variables. Nevertheless, the computational
implementation of the boundary conditions for the auxiliary vector
field is difficult in the context of finite elements since they involve either
the normal or tangential derivative of the gauge variable. In order to
circumvent this issue, we propose a weak formulation of the boundary
conditions based on the symmetric Nitsche method. Computational
results are presented to illustrate the accuracy of the proposed method.
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1 Introduction
In this article, we consider the non-dimensionalized incompressible Navier–
Stokes equations

∂tu+ (u · ∇)u = −∇p+ 1

Re
∆u+ f in Ω, (1a)

∇ · u = 0 in Ω, (1b)

where Ω ⊂ R2 is a bounded domain with sufficiently smooth boundary Γ ,
u is the velocity, p is the pressure, and Re is the Reynolds number. We also
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prescribe the above problem with the no-slip boundary condition

u = 0 on Γ (2)

and the initial condition
u|t=0 = u0 in Ω. (3)

Designing an efficient and accurate numerical scheme for problem (1)–(2)
is a challenging task. In particular, one of the difficulties is the numerical
implementation of the divergence-free condition (1b). A common approach
is to treat this condition as a constraint, and then the method of Lagrange
multipliers is utilized. This results in a saddle-point problem, which is
computationally expensive for high-resolution numerical simulations [1].

The projection method was invented by Chorin [3] and independently by
Temam [16] to efficiently compute numerical solutions of the incompressible
Navier–Stokes equations. By omitting the pressure term in the momentum
equation (1a), the method first computes an intermediate velocity field that
does not necessarily satisfy the divergence-free condition. Then, by solving a
Poisson problem, the intermediate velocity field is projected onto a space of a
divergence-free vector field. Since the computations of velocity and pressure
are decoupled, this approach avoids the need to a solve saddle-point system.
However, this significant improvement in computational efficiency does come
at a price. Specifically, the projection method produces inaccurate numerical
boundary layers for the pressure [5].

E and Liu [6] introduced the gauge method as an effort to improve the
projection method. As illustrated in Figure 1, utilizing the projection method
to solve problem (1)–(2) with the same numerical setup described in Section 5
gives inaccurate numerical boundary layers, and hence the gauge method
is proposed as a solution to this accuracy issue [18]. Furthermore, the
computational efficiency of the projection method is well retained by the
gauge method since the gauge method is able to computationally decouple
the problem. This efficiency is mainly due to the gauge method reformulating
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Figure 1: Pressure error heatmaps obtained using the projection method.

the incompressible Navier–Stokes equations in terms of an auxiliary vector
field and a gauge variable [17].

Some studies have been conducted to illustrate the accuracy of the gauge
method [17, 4, 6, 2, 19], where finite difference methods were mainly used for
spatial discretizations. The use of finite elements for spatial discretizations in
gauge methods receives limited attention, and the numerical implementation
of the boundary conditions for the auxiliary vector field is still a concern [4,
13]. In particular, these boundary conditions are complicated to implement
using finite elements due to the presence of either a normal or tangential
derivative of the gauge variable. One way to address this problem is by
utilizing the gauge-Uzawa method, which was developed by Nochetto and
Pyo [13, 14]. In this article, instead of using the gauge-Uzawa method, we
resolve the implementation problem by imposing the boundary conditions
in a weak sense using the symmetric Nitsche method [12]. Although this
approach gives a complicated weak problem, the actual implementation is
straightforward through the help of popular finite element packages such as
FEniCS [10].
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2 Gauge formulation
In this section, we briefly present the gauge formulation of the Navier–Stokes
equations (1), which was proposed by E and Liu [4]. To begin with, we
introduce a gauge variable φ, and then we define the auxiliary vector field as

m = u−∇φ . (4)

Substituting the above equation into equation (1a) gives

∂tm+ (u · ∇)u =
1

Re
∆m−∇

(
p+ ∂tφ−

1

Re
∆φ

)
+ f . (5)

Hence, we enforce the condition

p =
1

Re
∆φ− ∂tφ , (6)

and equation (5) becomes

∂tm+ (u · ∇)u =
1

Re
∆m+ f . (7)

The above equation specifies a time-dependent equation for the auxiliary
vector field m without the pressure term p.

To obtain an equation for φ, we take the divergence of both sides of (4):

− ∆φ = ∇ ·m , (8)

where we have used the divergence-free condition (1b). Since the gauge
variable φ has no physical meaning, we have the freedom to choose an
unambiguous boundary condition for the Poisson problem (8). For instance,
the homogeneous Neumann or Dirichlet boundary condition. In this article,
we focus our attention on the homogeneous Neumann boundary condition

∂nφ = 0 on Γ, (9)
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where n is the normal vector to the boundary. This boundary condition and
equation (2) imply that

m · n = 0 and m · τ = −∂τφ on Γ, (10)

which are the boundary conditions for equation (7). Here, τ is the tangential
vector to the boundary.

Remark 1. Using a similar argument, prescribing the homogeneous Dirichlet
boundary condition φ = 0 on Γ leads to corresponding boundary conditions
for equation (5). In this case, the boundary conditions involve the normal
derivative ∂nφ.

Remark 2. The numerical implementation of the boundary conditions (10)
involves the computation of the tangential derivative ∂τφ. The non-variational
nature of this term leads to implementation difficulties, especially when
handling complex geometries [13].

In summary, the gauge formulation of the Navier–Stokes problem gives the
following time-dependent problem for the auxiliary vector field:

∂tm+ (u · ∇)u =
1

Re
∆m+ f , (11a)

m · n = 0 and m · τ = −∂τφ on Γ . (11b)

Furthermore, the gauge variable is governed by

−∆φ = ∇ ·m , (12a)
∂nφ = 0 on Γ . (12b)

We observe from this reformulation that the pressure term has been eliminated,
and the boundary conditions (11b) imply that the coupling of the problem is
now on the boundary Γ .
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3 Weakly imposed boundary conditions
As stated in the previous section, the main challenge is the numerical imple-
mentation of the boundary conditions (11b). In this section, we describe a
variational approach to incorporate these boundary conditions based on the
symmetric Nitsche method [12].

Let Th be a shape regular finite element partitioning of the domain Ω ⊂ R2 .
This partitioning naturally generates a set of edges Eh on the boundary Γ .
Furthermore, the diameter of an edge E ∈ Eh is denoted by hE.

We denote H1(Ω) as the usual Sobolev space on Ω. The L2-inner product is
denoted by (· , ·)Ω, where Ω is the domain of integration. We also define the
function spaces

Vh =
{
v ∈ H1(Ω)2 : v|K ∈ Pr(K)

2 for all K ∈ Th
}

and

Wh =

{
w ∈ H1(Ω) :

∫
Ω

w dx = 0 and w|K ∈ Pr(K) for all K ∈ Th

}
,

where Pr(K) is the set of polynomials on an element K ∈ Th with degree
at most r. Using the symmetric Nitsche method to impose the boundary
conditions (11b) leads to the following semi-discrete weak problem: find
(mh(t), φh(t)) ∈ Vh ×Wh such that

(∂tmh(t), vh)Ω +
1

Re
(∇mh(t),∇vh)Ω −

1

Re

∑
E∈Eh

(∇mh(t)n, vh)E

−
1

Re

∑
E∈Eh

(mh(t),∇vhn)E +
γ

Re

∑
E∈Eh

1

hE
(mh(t), vh)E

−
1

Re

∑
E∈Eh

(Pτ(∇φh(t)),∇vhn)E +
γ

Re

∑
E∈Eh

1

hE
(Pτ(∇φh(t)), vh)E

= (f(t), vh)Ω − (∇uh(t)uh(t), vh)Ω

(13)
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and
(∇φh(t),∇qh)Ω = (∇ ·mh(t), qh)Ω (14)

for all (vh, qh) ∈ Vh ×Wh , where γ > 0 is the stabilization constant. Here,
Pτ(v) = (I−n⊗n)v is the tangential component of v, where n and τ denote
the normal and tangential vectors, respectively.

Remark 3. We observe that the semi-discrete weak problem described above
is a coupled problem, and hence the time discretization needs to be chosen
such that the problem becomes computationally decoupled. This is discussed
in more details in the next section.

Remark 4. The stabilization constant γ must be chosen large enough such
that the coercivity of the problem is maintained, but not too large to avoid
a significant loss in numerical accuracy [8]. Our choice of the stabilization
constant is based on the common values chosen for the Poisson equation with
Dirichlet boundary conditions [15, 11].

We now show that the weak problem (13)–(14) is consistent with the continu-
ous problem (11)–(12).

Proposition 5. The weak solutions of the problem (11)–(12) satisfy equa-
tions (13)–(14).

Proof: Suppose that (m, φ) is a weak solution of the problem (11)–(12).
We first observe that (m, φ) satisfies equation (14) since this equation is the
standard weak formulation of the Poisson problem (12). Then, in order to
show that the weak solution satisfies equation (13), we look at the boundary
terms in this equation. Since the first boundary term emerged from integration
by parts, it suffices to show that the other boundary terms vanish. To this
end, we use the normal and tangential components of m and ∇φ as follows:

Pτ(∇φ) = (∇φ·τ)τ and m = (m·n)n+(m·τ)τ = (m·τ)τ = −(∇φ·τ)τ
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for all E ∈ Eh , where we have used the fact that (m, φ) satisfies equation (11b).
Therefore, we obtain

−
1

Re

∑
E∈Eh

(m,∇vhn)E +
γ

Re

∑
E∈Eh

1

hE
(m, vh)E

−
1

Re

∑
E∈Eh

(Pτ(∇φ),∇vhn)E +
γ

Re

∑
E∈Eh

1

hE
(Pτ(∇φ), vh)E

= −
1

Re

∑
E∈Eh

(−(∇φ · τ)τ,∇vhn)E +
γ

Re

∑
E∈Eh

1

hE
(−(∇φ · τ)τ, vh)E

−
1

Re

∑
E∈Eh

((∇φ · τ)τ,∇vhn)E +
γ

Re

∑
E∈Eh

1

hE
((∇φ · τ)τ, vh)E

= 0 ,

which concludes the proof. ♠

4 Time discretizations
In this section, we describe the time discretization of the semi-discrete weak
problem (13)–(14). The main motivation is that the time discretization
has to computationally decouple the problem and maintain accuracy. The
time discretization presented here is based on the second-order backward
differentiation formula, which is commonly used to numerically solve the
Navier–Stokes equations [9].

Let us start with discretizing equation (13) using the second-order backward
differentiation formula. Assuming a uniform time step k > 0 , we denote the
value of mh at the nth time step as mn

h. It follows that we have

∂tmh(t)|t=(n+1)k ≈
3mn+1

h − 4mn
h +m

n−1
h

2k
,
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and the rest of the time-dependent terms ∇φh, uh, and f are replaced
with ∇φn+1h , un+1h and fn+1, respectively. This leads to a fully discretized
equation, and we need to extrapolate ∇φn+1h and un+1h in order to computa-
tionally decouple the problem. For the gradient of the gauge variable ∇φn+1h ,
we use the extrapolation

∇φn+1h ≈ 2∇φnh −∇φn−1h ,

which is shown to be second-order accurate using normal mode analysis [18].
Applying a similar approach to the velocity un+1h gives un+1h ≈ 2unh − un−1h .
Hence, using these extrapolations, it is now possible to solve for mn+1

h given
the value of all variables at the previous two time steps.

We now describe in detail the resulting algorithm. Initially, we compute m1
h,

φ1h and u1h using the projection method. Set a final time T > 0 , and repeat
for n = 1, 2, . . . ,N , where N = bT/k− 1c .

1. Find mn+1
h ∈ Vh such that(
3mn+1

h − 4mn
h +m

n−1
h

2k
, vh

)
Ω

+
1

Re
(∇mn+1

h ,∇vh)Ω

−
1

Re

∑
E∈Eh

(∇mn+1
h n, vh)E −

1

Re

∑
E∈Eh

(mn+1
h ,∇vhn)E

+
γ

Re

∑
E∈Eh

1

hE
(mn+1

h , vh)E

= (fn+1, vh)Ω − (∇(2unh − un−1h )(2unh − u
n−1
h ), vh)Ω

+
1

Re

∑
E∈Eh

(Pτ(2∇φnh −∇φn−1h ),∇vhn)E

−
γ

Re

∑
E∈Eh

1

hE
(Pτ(2∇φnh −∇φn−1h ), vh)E

for all vh ∈ Vh , where Pτ(v) = (I− n⊗ n)v .
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2. Find φn+1 ∈ Wh such that (∇φn+1,∇qh)Ω = (∇ ·mn+1
h , qh)Ω for all

qh ∈Wh .

3. Compute un+1h =mn+1
h +∇φn+1h .

Remark 6. We do not need to compute the pressure at each time step to
carry out the algorithm. In the case where the pressure is a quantity of
interest, we recover it by discretizing equation (6). For instance, in order to
achieve a second-order accurate approximation, we utilize the Crank–Nicolson
discretization

p
n+1/2
h =

1

2Re
∆(φn+1h + φnh) −

φn+1h − φnh
k

.

5 Numerical results
In this section, we present some numerical results to demonstrate the accuracy
of our proposed method. In particular, we perform numerical tests based on
the method of manufactured solutions to verify that the proposed method is
second-order accurate and does not produce inaccurate numerical boundary
layers. The numerical computations for these tests are carried out using
FEniCS [10].

Let us first briefly describe the numerical setup. We choose the 2D unit
square Ω = [0, 1]2 as the domain. The exact solutions are chosen as follows:

ue =

[
− cos(t) sin(πx) sin(πx) sin(2πy)
cos(t) sin(2πx) sin(πy) sin(πy)

]
,

φe = − cos(t) cos(πx) cos(πy) ,
(15)

and
pe = (2π2 cos t− sin t) cos(πx) cos(πy) . (16)

Furthermore, we set the final time T = 0.5 and the stabilization constant
γ = 20 . Motivated by the Taylor–Hood element pair [7], we use P2, P2 and P1
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Figure 2: Pressure error heatmaps obtained using the gauge method.

for u, φ and p, respectively, where P1 and P2 denote the piecewise continuous
linear and quadratic elements, respectively. The time step is chosen such
that k = O(h) , where h is the spatial mesh size. We run the experiments for
h = 1/32, 1/64, 1/128, 1/256 . After that, we compute the rate of convergence
Rh = log2(‖eh‖/‖eh/2‖) using the L1, L2 and L∞ norms, where eh = ue − uh
for the velocity and eh = pe − ph for the pressure. Here uh and ph denote
the numerical approximation of the velocity and pressure, respectively.

Figure 2 illustrates the pressure absolute value error heatmaps for h = 1/256 .
The left heatmap shows that the errors are focused at the corners of the
domain, and the right heatmap verifies that there is no inaccurate numerical
boundary layer. Furthermore, the convergence rates for both the velocity and
pressure are illustrated in Tables 1–3 and Figures 3–4. It is inferred that both
the velocity and pressure achieve the expected second-order accuracy.

Remark 7. From Figure 2, we observe that the errors at the corners are
larger than the sides and interior of the domain. We argue that this is not a
concern since it is demonstrated in Table 3 that the L∞ norm of the error is
second-order accurate.
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Table 1: L1 norm error, where Rh = log2(‖eh‖L1/‖eh/2‖L1) .

h
u p

‖eh‖L1 Rh ‖eh‖L1 Rh
1/32 1.674E− 03 1.959 6.869E− 03 2.031

1/64 4.305E− 04 1.980 1.681E− 03 2.017

1/128 1.091E− 04 1.990 4.152E− 04 2.009

1/256 2.746E− 05 1.032E− 04

Table 2: L2 norm error, where Rh = log2(‖eh‖L2/‖eh/2‖L2) .

h
u p

‖eh‖L2 Rh ‖eh‖L2 Rh
1/32 1.518E− 03 1.967 9.135E− 03 2.029

1/64 3.882E− 04 1.985 2.238E− 03 2.018

1/128 9.804E− 05 1.993 5.527E− 04 2.010

1/256 2.463E− 05 1.372E− 04

Table 3: L∞ norm error, where Rh = log2(‖eh‖L∞/‖eh/2‖L∞) .

h
u p

‖eh‖L∞ Rh ‖eh‖L∞ Rh
1/32 4.101E− 03 1.990 6.414E− 02 1.868

1/64 1.032E− 03 1.998 1.757E− 02 1.884

1/128 2.585E− 04 2.000 4.759E− 03 1.894

1/256 6.461E− 05 1.281E− 03
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6 Conclusion
In this work, we have applied the symmetric Nitsche method to weakly impose
the boundary conditions for the auxiliary vector field in the gauge formulation
of the Navier–Stokes equations. Furthermore, we have described the appropri-
ate time discretization for the resulting semi-discrete weak problem, and the
detailed algorithm has been set out. Finally, we have verified via numerical
experiments that our proposed method achieved the expected accuracy and
did not suffer from inaccurate numerical boundary layers.
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