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Abstract

We introduce a two-stage global-then-local search method for solv-
ing feasibility problems. The approach pairs the advantageous global
tendency of the Douglas–Rachford method to find a basin of attraction
for a fixed point, together with the local tendency of the circumcen-
tered reflections method to perform faster within such a basin. We
experimentally demonstrate the success of the method for solving non-
convex problems in the context of wavelet construction formulated as
a feasibility problem.
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1 Introduction
Wavelet construction has been recently formulated as a feasibility problem [9,
10, 11]. In harmonic analysis, wavelets are signal processing tools that define a
transform which overcomes the shortcomings of the classical Fourier transform
in time–frequency analysis. In optimisation, to solve a feasibility problem is
to find a point on the intersection of a finite family of sets. By formulating
wavelet architecture as a feasibility problem, the construction of a wavelet
translates to the task of finding a point on the intersection of closed constraint
sets arising from the conditions and properties that the wavelet must satisfy.

Wavelets are functions whose shifts and dilates form an orthonormal basis
for the ambient function space. The multiresolution structure and compact
support properties are crucial ingredients in the development of fast transform
techniques [6]. Additionally, the regularity of a wavelet dictates the sparsity of
coefficients in the decomposition. The earliest examples of smooth compactly
supported wavelets on the line were achieved by Daubechies [6] through the
multiresolution analysis (mra) introduced by Mallat [15] and Meyer [16].
However, the techniques employed by Daubechies (especially those based
on complex analysis) do not apply to higher dimensions. With the recent
introduction of the feasibility approach by Franklin, Hogan, and Tam, non-
tensorial constructions in higher dimensions become much more accessible [9,
10, 11]. Moreover, the feasibility approach readily accounts for other design
criteria, including symmetry and cardinality [7].

The method of alternating projections and the Douglas–Rachford (dr) method
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are two well-known projection algorithms that solve two-set feasibility prob-
lems. The dr method is notable for its dexterity in solving convex and
nonconvex feasibility problems, including Sudoku puzzles, matrix completion,
and phase retrieval [1, 13]. When applied to nonconvex feasibility problems
involving hypersurfaces, dr iterates often exhibit an initial search for a basin
of attraction to a fixed point, followed thereafter by a spiraling pattern within
the basin [5, 4, 12, 14]; this spiraling is associated with slower convergence.
With the goal of obviating excessive spiralling by taking a clever step towards
the feasible point, Behling, Bello Cruz, and Santos [2] introduced the idea
of circumcentering the substeps of the dr method for intersecting affine
subspaces. This has since come to be known as the circumcentered reflections
method (crm) [3]. The method involves the computation of a circumcenter
(of successive reflections) which may not be defined outside the context of
intersecting affine subspaces. For the broader context of nonconvex feasibility
problems, Dizon, Hogan, and Lindstrom [8] introduced a piecewise modifi-
cation that computes a step of crm when the circumcenter construction is
well-defined, and reverts to a normal dr step when it is not. This construction
is always well-defined.

In this article, we introduce a heuristic for solving feasibility problems by
forming a two-stage dr-crm, where we take crm to mean the always-well-
defined version. We illustrate that assembling dr and crm together combines
the robustness of dr in global searches and the speed of crm during a local
search. We compare performance of this two-stage method with a full dr
approach in the context of wavelet feasibility problems.

The rest of the article is organised as follows. Section 2 recalls the wavelet
feasibility problem. Section 3 revisits dr and crm, thereafter comparing their
performance in solving wavelet feasibility problems. In Section 4, we assemble
the two-stage dr-crm approach, and assess its performance in dealing with
the feasibility problem at hand.
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2 Wavelet construction problem
The construction of wavelet orthonormal bases is traditionally achieved by
finding a scaling function-wavelet pair (ϕ,ψ) that satisfies conditions arising
from the mra. For wavelets on the line, the construction reduces to finding a
matrix-valued function U(ξ) : R→ C2×2 of the form

U(ξ) =

[
m0(ξ) m1(ξ)

m0(ξ+ 1/2) m1(ξ+ 1/2)

]
, (1)

where m0 and m1 are trigonometric series called filters associated with
ϕ and ψ, respectively. The wavelet matrix U is subject to constraints derived
from the conditions and properties that ϕ and ψ must satisfy. Finding the
coefficients of the filters m0 and m1 is essential to constructing a (ϕ,ψ)
pair. The following discussion revisits the wavelet feasibility problem which
originally appeared in the work of Franklin, Hogan, and Tam [9, 10, 11].

mra conditions and wavelet properties A consistency condition readily
follows from (1), that is, U(ξ + 1/2) = σU(ξ) where σ is the ‘row swap’
matrix. Moreover, a necessary condition for the shifts and dilates of the
wavelet to be orthonormal is that m0(0) = 1 and U(ξ) is unitary almost
everywhere. Forϕ andψ to be compactly supported on [0,M−1] , we insist that
m0 and m1 be trigonometric polynomials of the form m0(ξ) =

∑M−1
k=0 hke

2πikξ

and m1(ξ) =
∑M−1

k=0 gke
2πikξ . Consequently, U(ξ) =

∑M−1
k=0 Ake

2πikξ where
Ak ∈ C2×2 . Finally, the regularity requirement is achieved by requiring
d`

dξ`
U(ξ)|ξ=0 to be diagonal, for all 0 < ` 6 (M − 2)/2 . A more elaborate

discussion about the foregoing design conditions is given by Franklin, Hogan,
and Tam [11, Section 2.2].

Discretisation by uniform sampling The compact support condition
allows for a discretisation of the problem by a uniform sampling at M points
{j/M}M−1

j=0 ⊂ [0, 1) . If Uj = U(j/M) , then the sampling procedure produces
an ensemble of matrices U = (U0, U1, . . . , UM−1) ∈ (C2×2)M . Note that the
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collection of coefficients Ak may also be viewed as an ensemble A = (Ak)
M−1
k=0 .

Moreover, we define an M-point discrete Fourier transform FM : (C2×2)M →
(C2×2)M by

(FMB)j :=

M−1∑
k=0

Bke
2πijk/M with inverse (F−1

M D)j :=
1

M

M−1∑
k=0

Dke
−2πijk/M ,

where B = (Bk)
M−1
k=0 and D = (Dk)

M−1
k=0 ∈ (C2×2)M . With this transform, we

have U = FMA and A = F−1
M U . This establishes a connection between the

uniform samples of U(ξ) and the coefficient matrices Ak. A more compre-
hensive discussion on sampling and discretisation appeared in the work of
Franklin, Hogan, and Tam [11, Section 3.2–3.3].

Wavelet properties encoded on the ensembles of matrices The
consistency condition is imposed on the ensemble of samples to satisfy
Uj+M

2
= σUj for all j ∈ {0, 1, . . . ,M − 1} . On the other hand, unitarity

of each sample Uj = U(j/M) for j ∈ {0, 1, . . . ,M− 1} is insufficient to ensure
the unitarity of U(ξ) almost everywhere. However, forcing U(ξ) to be unitary
at 2M samples, uniformly chosen to be U(j/M) and U((2j+ 1)/(2M)) , for
j ∈ {0, 1, . . . ,M− 1} , is sufficient. Incidentally, given U = (U(j/M))M−1

j=0 , the
other ensemble Ũ = [U((2j + 1)/(2M))]M−1

j=0 may be obtained entirely from
the original samples in U. Defining a modulation operator χM : (C2×2)M →
(C2×2)M by (χMD)k = e

πik/MDk where D = (Dk)
M−1
k=0 ∈ (C2×2)M , we have

U
(
2j+1
2M

)
=

M−1∑
k=0

e2πijk/Meπik/MAk =

M−1∑
k=0

e2πijk/M(χMA)k = [FMχMF
−1
M (U)]j .

Thus, Ũ = FMχMF
−1
M (U) . Lastly, the regularity condition is written in terms

of the sample matrices Uk as

d`

dξ`
U(ξ)

∣∣
ξ=0

= (2πi)`
M−1∑
j=0

j`Aj =

M−1∑
k=0

α`kUk ,

where α`k := (2πi)`/M
∑M−1

j=0 j
`e−2πikj/M .
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Wavelet feasibility problem Let (C2×2)Mσ denote the collection of ensem-
bles in (C2×2)M that satisfy the consistency condition. Furthermore, let U(2)
denote the collection of all 2-by-2 unitary matrices, and C ⊗ C be the set
of 2-by-2 diagonal matrices. The wavelet feasibility problem is stated as
follows.

Definition 1. (Wavelet feasibility problem) Let C1, C2, C3 ⊆ (C2×2)Mσ where
M is even and M > 4 . The wavelet feasibility problem aims to find a
U = (U0, . . . , UM−1) ∈ C1 ∩ C2 ∩ C3 ⊆ (C2×2)Mσ where

C1 :=

{
U : U0 =

(
1 0

0 z

)
, |z| = 1 , Uj ∈ U(2) , j ∈ {0, 1, . . . ,M/2}

}
,

C2 :=
{
U : [FMχMF

−1
M (U)]j ∈ U(2) , j ∈ {0, 1, . . . ,M/2}

}
,

C3 :=

{
U :

M−1∑
k=0

α`kUk ∈ C⊗ C , 1 6 ` 6 (M− 2)/2

}
.

We note that C1 and C2 are nonconvex subsets of (C2×2)Mσ , whereas C3 is
a subspace. A feasible point U = (U0, . . . , UM−1) contains the M samples
ofU(ξ) from which we obtain the coefficientsAk viaA = F−1

M U . Consequently,
the coefficients of the scaling filter m0(ξ) and wavelet filter m1(ξ) may be
easily pulled out from the Ak. Through a cascade algorithm applied on the
coefficients ofm0(ξ) andm1(ξ), we may be able to plot the scaling function ϕ
and wavelet ψ, respectively.

3 dr and crm for wavelet construction
In Franklin’s work on wavelets [9, 10, 11], dr solved more of the test cases
than other projection algorithms, and so wavelets pose a natural setting for
us to compare the performance of dr with that of crm.

We first recall the operators associated with the dr and crm algorithms.
Let H be a real Hilbert space. For a closed subset C of H, we define the
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operator PC : H → C by PC(x) = argminz∈C‖z − x‖ ; it is a selector for
the closest point projection for C. Its associated reflector is defined as
RV := 2PV − Id where Id is the identity map. Given three points x, y, z ∈ H ,
we denote C(x, y, z) to be their circumcenter which is a point equidistant
to x, y, z and lies on the affine subspace that they define.1

Definition 2. Let V and W be subsets of H with nonempty intersection.

1. The dr operator is defined as T(x) := x− PV(x) + PWRV(x) .

2. The circumcentering reflections method operator is defined as

crm(x) := C(x, RV(x), RWRV(x)) .

3. The generically proper crm operator is defined as

CV,W(x) :=

{
T(x) if x, RVx, RWRVx are colinear;
crm(x) otherwise.

Notice that the wavelet feasibility problem in Definition 1 has three constraint
sets. Using a product space reformulation [17], it is rewritten as a two-set
problem by defining the sets

S := C1 × C2 × C3 ,
D :=

{
(U1,U2,U3) : U1 = U2 = U3 ∈ (C2×2)Mσ

}
. (2)

The projectors onto C1, C2 and C3 are computed by Franklin [9, Chapter 6]
while the projectors onto S and D are given by Pierra [17, Section 1].

1When {x, y, z} is a doubleton, the circumcenter is the average of the two distinct points,
and when {x, y, z} is a singleton, the circumcenter is the unique point.
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Table 1: Statistics of full run (not two-stage) dr and crm performance as
applied to the wavelet feasibility problem initialized at 1 000 random points.

Algorithm dr crm
cases solved 986 316

cases solved alone 674 4

wins when both converged 38 274

Numerical Experiment: dr versus crm In what follows, we attempt
to solve the product space reformulation of the wavelet feasibility problem
corresponding to the case where M = 6 . We confine our choice of projection
algorithms to dr and crm—where crm here refers to its generically proper
version. Henceforth, we let {xk} be the sequence of iterates generated by
a projection algorithm. In all numerical implementations, we consider a
tolerance ε := 10−9 and employ a stopping criterion given by ‖PDPS(xk) −
PS(xk)‖ < ε .

We consider a projection algorithm to have solved our feasibility problem if and
when it attains a point that satisfies the stopping criterion within the cutoff
of 100 000 iterates. To present our numerical results, we plot errors given by
‖xk − xk−1‖ and ‖PS(xk) − PS(xk−1)‖ for the original and shadow sequences,
respectively. We also provide statistics on the number of iterations which
we mainly consider as a performance measure. Additionally, we comment on
the versatility of an algorithm in tackling the nonconvex wavelet feasibilty
problem by counting the number of times it solves a particular problem
initialized at random starting points.

Table 1 summarises the performance of dr and crm applied to 1 000 random
starting points. Initialised at similar starting points, dr demonstrates superior
robustness to crm. Interestingly, there are four starting points where dr
failed to solve the problem but crm succeeded. For all cases where dr and
crm both solved the problem, we compare the number of iterations needed
and notice that crm is more efficient than dr in most runs. Figure 1a shows
a specific case where crm failed but dr converged. The plot also highlights
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Figure 1: Performance comparisons of dr against crm, and dr against
two-stage dr-crm in solving the wavelet feasibility problem with M = 6

initialized at 1 000 random points.

the propensity of dr to wander for a number of iterates before spiraling
towards a feasible point. In the next section, we set up a two-stage dr-crm
to combine the apparent robustness of dr with the local speed of crm.

Even when dr and crm are initialized at the same starting point, the two
approaches may yield different wavelets and scaling functions. In feasibility
problems with more than one solution, the final destination of dr is known
to exhibit high sensitivity to starting points [4, 12]. Since crm behaves
differently than dr, it is not surprising that the two methods may yield
convergence to different feasible points from the same starting point.
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4 The two-stage dr-crm search algorithm
Our experiments in Section 3 indicate that crm may fail to locate a feasible
point when it is used from the outset; that is, when a full run of plain crm is
used (see Figure 1a for an example). However, if both dr and crm converge,
crm needed fewer iterations in most cases tested. This motivates us to
assemble a two-stage dr-crm to combine the apparent robustness of dr and
the local speed of crm. The two-stage dr-crm is as follows.

1. Search for an attractive basin by iteratively applying TS,D (dr), and
monitor the error ‖PD(xn)−PD(xn−1)‖ for the oscillations that indicate
spiralling.

2. Once oscillations are seen, switch to iteratively applying CS,D (crm).

Numerical experiment: dr versus dr-crm In implementing the two-
stage dr-crm, we first run dr until the gap distance ‖PDPS(xk) − PS(xk)‖
reaches a 10−2 threshold, whereabouts we suspect dr to start spiralling in a
local basin of attraction to a fixed point. Thereafter, we switch to running
crm until the stopping criterion is satisfied. For an example, we refer to
Figure 1b. The threshold is reached after 552 iterations and it only took
another 1 745 iterations for crm to satisfy the stopping criterion. We also
plot a full run of dr in the same figure; dr took 7 112 iterations beyond the
552 initial iterates to satisfy our stopping rule.

For the same set of random starting points used to obtain the data in Table 1,
we generate another set of statistics to compare the performance of dr
and the two-stage dr-crm. To make a sensible analysis, we ignore the
iterates needed to reach the 10−2 threshold and only present the statistics
for both dr and the two-stage dr-crm generated after threshold is obtained.
Essentially, we are analyzing the action of dr and crm, but only after a
suitable basin is suspected to be reached. The statistics are summarized
in Table 2. Notice that the two-stage dr-crm outperformed dr in every
test case, without introducing any loss of stability. The two-stage dr-crm
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Table 2: Performance of dr and two-stage dr-crm when applied to the
wavelet feasibility problem initialized at 1 000 random points.

algorithm solves wins min Q1 mean Q3 median max
dr 986 0 560 697 5 633 8 162 6 619 48 683

dr-crm 986 986 117 155 1093 1 737 1 612 1 896

took at most 1 896 iterations and a mean number of 1 093 iterations. This is
substantially smaller than the dr mean of 5 633 iterations.

5 Conclusion
We have introduced a two-stage search for solving feasibility problems. The
assembly of dr followed by crm is motivated by the idea of combining the
robustness of dr in searching for a feasible point and the ability of crm to
take bolder steps locally. Numerical experiments indicate that crm may fail
to locate the feasible point if it is used from the outset, prior to observed
spiralling. However, crm solved every problem when it was started after
oscillations were observed in the error of dr method. The two-stage dr-crm
is seen to be faster in all cases than dr on its own. For this reason, we note
that the two-stage method is the new state-of-the-art heuristic for solving
wavelet feasibility problems on the line.
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