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Abstract

In this work, we discuss elasticity equations on a two-dimensional
domain with random boundaries and we apply these equations to
modelling human corneas.
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1 Introduction
In this article we analyse how the solution of the linear elasticity equation
behaves as a function of (stochastic) perturbations of the domain. This is a
recent research area of uncertainty quantification in which we assign random
fields to parameters in a partial differential equation (pde) model. In general,
the output goal is to compute some functionals of the solution which yield
useful statistics such as expectation, variance or correlation.

There are many potential applications of this problem, such as shape op-
timisation of airfoils, sensitivity analysis in structural design, tomography
in medical imaging and seismology [14], minimal surfaces, and biological
membranes and molecular structures [4, 2]. As a concrete application of
the method, we construct a simple elasticity model of human corneas from
different individuals.

The novel features of the article are listed as follows. Firstly, while the
numerical analysis in shape derivatives for elliptic pdes with a stochastic
boundary [12, 10, 11] is widely available, a similar analysis for elasticity
equations does not exist in the literature. Secondly, we propose a new way to
approximate the expectation of the random solution of the random boundary
problem using a higher order quasi-Monte Carlo method [6], which has not
been carried out before even for elliptic random boundary problems. The
higher order quasi-Monte Carlo rules employed in this article are based on
interlaced polynomial lattice point rules [9] and we compare this method with
a randomized quasi-Monte Carlo method based on scrambled interlaced Sobol
points [5].
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2 Linear elasticity with random domains
Let D ⊂ R2 be a bounded, closed and connected domain with boundary
∂D ∈ Ck+1 for k > 3 . Let f be the body force within D and g be the traction
force tangential to ∂D. The linear elasticity equation on D reads

−∇ · σ = f in D , (1)
u = g in ∂D . (2)

Here u is the displacement vector, and σ is the Cauchy stress tensor which
relates to the resistance of internal forces exerted by neighbouring particles
over some surface element. By Hooke’s law we have

σ = Cε(u) = λ(tr ε)I+ 2µε , (3)

where λ and µ are the Lamé parameters, C is Hooke’s tensor, and the strain
tensor is

ε(u) = 1
2

[
∇u+ (∇u)T

]
, (4)

which relates to the change in displacement relative to a reference configuration
for small u and ∇u.

Now suppose the boundary ∂D is perturbed randomly in an O(δ) layer which
yields a family of boundaries ∂Dδ, where we assume that δ > 0 is sufficiently
small. As κ varies, the curve ∂Dδ is perturbed from the fixed curve ∂D
with the perturbation δκ(x,ω)n . Let (Ω,Σ,P) be a suitable probability
space. We parameterize the deformed boundary ∂Dδ using a random field
κ(·, ·) : ∂D×Ω→ R for samples ω ∈ Ω ,

∂Dδ = {x+ δκ(x,ω)n : x ∈ ∂D} , (5)

where n is the exterior unit normal vector to the reference boundary ∂D.

Similar to Harbrecht [12, Eq. (3.3)] we assume that

‖κ(·,ω)‖Ck(∂D) 6 1
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for P almost all ω ∈ Ω .

Assume that the random field κ admits the Karhunen–Loéve expansion [15]

κ(x,ω) = κ0 + C

∞∑
j=1

Kj(ω)
√
γjψj(x) . (6)

We use random variables Kj(ω) ∼ U(−1, 1) where U(a, b) denotes the uni-
form distribution over (a, b), κ0 = 0 and the constant C > 0 is such that
ess supx∈D,ω∈Ω |κ(x,ω)| = 1 and expectation

E[κ(x, ·)] = 0 . (7)

We interpret the deformation of the boundary using the flow of a vector
field [4, Chapter 8],[13]. Let V : D → M ⊂ R2 be a Lipschitz continuous
vector field on a two-dimensional manifoldM. For x ∈M the velocity vectors
in V induce a flow φ(t, x) and are tangential to the integral curves of the
vector field yielded from the ode

∂φ(t, x)

∂t
= V(x) , φ(0, x) = x , for all x ∈ D .

The perturbation field Vδ : D×Ω→M ⊂ R2 deforms the boundary ∂D with
the velocity at t = 0 of the flow field Vδ(x,ω) = δκ(x,ω)n . We think of the
boundary perturbation as a diffeomorphism

∂D 7→ ∂Dδ = [I+ V(ω)]x = {φ(δ, x,ω) : x ∈ ∂D} ,

where I is the identity operator.

We consider the boundary value problem that models the elasticity of the
domain with the perturbed boundary

−∇ · σδ = f in Dδ , σδ = Cε(uδ) , uδ = g on ∂Dδ ,

where as before C is Hooke’s tensor and σδ is the Cauchy’s stress tensor.
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Let us define the transportation of a vector uδ along the flow for t ∈ [0, δ] by

ut(x,ω) = uδ(φ(t, x,ω),ω) , u0(x,ω) = uδ(φ(0, x,ω),ω) .

The Lagrangian or ‘material’ derivative for x ∈ D ∩Dδ is defined by

u̇(x,ω) = lim
t→0+

ut(φ(t, x,ω),ω) − u0(x,ω)

t
, 0 < t 6 δ .

Taking the total derivative at pseudo-time t = 0 , we obtain

u̇(x,ω) =
∂u0(φ(t, x,ω),ω)

∂t

∣∣∣∣
t=0

+∇u0(x,ω) · ∂φ(t, x,ω)

∂t

∣∣∣∣
t=0

= du(x,ω) +∇uδ · Vδ(x,ω) , (8)

where the Eulerian or local shape derivative du is defined pointwise by

du(x) = lim
δ→0+

uδ(x) − u
0(x)

δ
, x ∈ D ∩Dδ .

3 Weak formulation
Without loss of generality (or by introducing a new variable [3]), we assume
g = 0 in (2). The weak formulation of (1) under the zero Dirichlet condition
is to find the solution of the unperturbed problem ū ∈ H2(D) ∩ H10(D) so
that

−

∫
D

[∇ · σ(ū)] · vdx =
∫
D

f · vdx , for all v ∈ H10(D) . (9)

Using integration by parts, equation (9) is written as

2µ

∫
D

ε(ū) : ε(v)dx+ λ

∫
D

(∇ · ū)(∇ · v)dx =
∫
D

f · vdx , (10)

where for two general tensors ε and ε̄, we set ε : ε̄ =
∑

i

∑
j εi,jε̄i,j .
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Let us define the bilinear form

a(ū, v) := 2µ

∫
D

ε(ū) : ε(v)dx+ λ

∫
D

(∇ · ū)(∇ · v)dx

and the linear functional

`1(v) =

∫
D

f · vdx , v ∈ H10(D) .

We then write (10) as

a(ū, v) = `1(v) , for all v ∈ H10(D) . (11)

The weak formulation for equation (10) on Dδ is to find uδ ∈ H1(Dδ) so that

aδ(uδ, v) = `2(v) , for all v ∈ H1(Dδ) , (12)

where

aδ(uδ, v) = 2µ

∫
Dδ

ε(uδ) : ε(v)dx+ λ

∫
Dδ

(∇ · uδ)(∇ · v)dx

and
`2(v) =

∫
Dδ

f · vdx .

To understand the relation between ū and uδ we consider Taylor’s expansion
of the solution u = u(φ(t, x,ω),ω) at pseudo-time δ = 0 under the action
of the flow φ(t, x) for t ∈ [0, δ] where the derivatives are defined in the
Lagrangian sense. For uδ(x,ω) = u(φ(δ, x,ω),ω) we have

uδ(x,ω) = ū(x) + δdu(x,ω) +O(δ2) , x ∈ K ⊂
⋂
ω∈Ω

D(ω) . (13)

In the following theorem we consider the expectation and covariance of the
random solutions [12, Section 4.2].
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Theorem 1. With the assumptions above, the expectation and covariance
of the random solution of the elasticity equation with random boundary Dδ

satisfy

E[uδ] = ū+O(δ2) in K , (14)
Cov[uδ] = δ2E[du⊗ du] +O(δ3) in K× K , (15)

where ū ∈ H1(D) solves the deterministic problem on the nominal domain D.

Proof: We outline the main ideas [12, Section 4.2 for more details]. Using
the assumption (7) and the properties of du, we have

E[du(x,ω)] = −E[κ(x, ·)]∂ū
∂n

= 0 on ∂D .

Thus the first order term in the shape Taylor expansion (13) vanishes.
Hence (14) follows. Equation (15) follows from the properties of the variance,

Cov[uδ] = E[uδ]2 − (E[uδ])2 .

From the Taylor expansion

uδ(x,ω) = ū(x) + δdu(x,ω) + δ2

2
d2u(x,ω) +O(δ3)

we have

E[(uδ(x,ω)2] = E
[
[ū(x) + δdu(x,ω) + δ2

2
d2u(x,ω) +O(δ3)]2

]
= ū2(x) + δ2E[du2(x,ω)] + 2δūE[du(x,ω)] (16)
+ δ2ū(x)E[d2u(x,ω)] +O(δ3) .

On the other hand

(E[uδ(x,ω])2 =
(
E[ū(x) + δdu(x,ω) + δ2

2
d2u(x,ω) +O(δ3)]

)2
=
(
ū(x) + δE[du(x,ω)] + δ2

2
E[d2u(x,ω)] +O(δ3)

)2



4 Numerical experiments C263

= ū2(x) + δ2E2[du(x,ω)] + 2δūE[du(x,ω)] (17)
+ δ2ū(x)E[d2u(x,ω)] +O(δ3) .

Subtracting equations (16) and (17) we obtain the desired result. ♠

To construct an approximate solution using a finite element method, we
denote by Wh the space of vectors that each component is a piece-wise linear
function. The Galerkin approximation problem for (11) is: find uh ∈Wh so
that

a(uh, v) = `1(v) , for all v ∈Wh . (18)

We approximate Euδ using a higher order quasi-Monte Carlo method [6] by
discretising the sample space of κ defined in (6) with

κ(x,y) = κ0 + C

s∑
j=1

yjψj(x) ,

where y = (y1, y2, . . . , ys) ∈ Rs is a point in a set of N quasi-Monte Carlo
quadrature points {y(1),y(2), . . . ,y(N)} for some given truncated dimension s.
Then

E[uδ(x)] ≈
1

N

N∑
k=1

uδ(x,y
(k)) .

The approximation error of quasi-Monte Carlo quadrature of N quadrature
points is of order O(N−λ) with λ > 2 [6].

4 Numerical experiments
The numerical experiments presented in this section are inspired by an
application in optometry and vision science. We model the elasticity of
human corneas of different individuals using the elasticity equation on random
domains. This is motivated by the random parameters of the human corneas [1,
7, 8, 18, 19, 16] listed in Table 1.
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Table 1: parameters of the human cornea.
Anterior corneal curvature Mean radius = 7.74± 0.26mm
Posterior corneal curvature Mean radius = 7.18± 0.28mm
Central corneal thickness 545.94± 36.76 µm
Peripheral corneal thickness 821± 56µm
Corneal diameter Horizontal = 11.81± 0.65mm

Vertical = 11.26± 0.64mm
Intraocular pressure 15.06± 2.71mmHg
Young’s modulus of the cornea 0.29± 0.06MPa

Figure 1 captures the parameters in Table 1 in a simple geometry sketch,
where the mean radius of the anterior cornea is denoted by b+ dc , the mean
radius of the posterior is denoted b, central corneal thickness is denoted by dc,
and the peripheral thickness is denoted dp. From the diagram, we extract
the approximation of the human cornea, given in Figure 2. The random
boundary is modelled by (5) with x = (a cos θ, b sin θ) (for the inner ellipse)
or x = ((a+ da) cos θ, (b+ dc) sin θ) (for the outer ellipse) and

κ(θ,y) =

5∑
j=1

yj cos(jθ) + yj sin(jθ) ,

where y = (y1, . . . , y5) is selected from a set of N = 1 024 higher order
quasi-Monte Carlo points. We then use Matlab’s pde analysis model

createpde('structural','static-planestress')

to solve the elastic equation for the fixed cornea and for each realisation of
the randomised corneas.

The Young’s modulus is 0.25 × 106 Pa, the Poisson’s ratio is 0.49 and the
pressure on the posterior (inner) curve is set to 2.0078 × 103 Pa. For the
fixed cornea, 88 371 quadratic finite elements over a triangular mesh with
178 300 nodes with mesh size τ = 0.01 is used to compute the reference
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Figure 1: a diagram which captures the parameters in Table 1 to construct
the domains which model human corneas.
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Figure 2: (left) the domain with a random boundary; and (right) its finite
element mesh.
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Table 2: The numerical errors between the numerical solutions ūh on the
fixed domain D and reference solution ū∗ with different mesh sizes h. Here
E is the number of quadratic finite elements and M is the number of nodes
in the mesh.
h ‖ex‖ ‖ey‖ ‖ex‖∞ ‖ey‖∞ E M

0.500 2.60× 10−4 7.51× 10−4 6.90× 10−4 1.49× 10−3 468 1341

0.250 1.58× 10−4 3.73× 10−4 3.97× 10−4 1.30× 10−3 710 1827

0.125 8.01× 10−5 1.47× 10−4 2.94× 10−4 9.72× 10−4 1304 3021

0.0625 2.86× 10−5 4.80× 10−5 1.64× 10−4 5.42× 10−4 2852 6129

solution ū∗. The `2 and `∞ errors between ū∗ and ūh for different mesh sizes
are given in Table 2. For the randomised cornea, the number of quadratic
finite elements ranges from 2 732 to 2 948 defined on triangular meshes (with
mesh size h = 0.0625) with the number of nodes ranging from 5 889 to 6 321.
A realisation of the triangular mesh is shown in the right panel of Figure 2.
In the current implementation, generating each mesh took less than 0.8 s on
a MacBook pro 2.6GHz with 16G of ram. However, for a more challenging
domain, mesh generation time could be saved if only the part of the domain
close to the random boundary is re-meshed for each new realisation.

We approximate E[uh,δ] using the higher order quasi-Monte Carlo method by

E[uh,δ] ≈ QN(uh,δ) =
1

N

N∑
k=1

uh,δ(x,y
(k)).

We note that uh,δ is a vector in R2, that is, uh,δ = (uxh,δ, u
y
h,δ) . The `2 and `∞

component errors between E[uh,δ] and ū∗ = (ūx∗, ū
y
∗) are defined by

‖ex‖ :=

(
1

|G|

∑
z∈G

|QN(u
x
h,δ(z)) − ū

x
∗(z)|

2

)1/2
,

‖ey‖ :=

(
1

|G|

∑
z∈G

|QN(u
y
h,δ(z)) − ū

y
∗(z)|

2

)1/2
,
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Table 3: Numerical errors between QN(uh,δ) and ū∗ with different values of δ
using N = 210 interlaced polynomial lattice points.

δ ‖ex‖ ‖ey‖ ‖ex‖∞ ‖ey‖∞
0.1000 4.99× 10−3 1.03× 10−2 2.58× 10−2 1.37× 10−1
0.0500 3.23× 10−3 1.63× 10−2 9.56× 10−3 4.00× 10−2
0.0250 1.01× 10−3 5.26× 10−3 2.70× 10−3 1.02× 10−2
0.0125 2.66× 10−4 1.44× 10−3 7.03× 10−4 2.56× 10−3

‖ex‖∞ := max
z∈G

|QN(u
x
h,δ(z)) − ū

x
∗(z)| ,

‖ey‖∞ := max
z∈G

|QN(u
y
h,δ(z)) − ū

y
∗(z)| ,

where G is the set of 178 300 nodes of a finite element mesh. Theorem 1 shows
the dependence of the solution on δ . In our numerical experiments we see a
similar behaviour of the numerical solution for different values of δ , that is the
numerical errors (for δ < 0.1) are of order O(δ2) as shown in Tables 3 and 4.
An analogous result of Theorem 1 for the numerical approximation requires a
full error analysis of the approximation method, which is left for future work.

The von Mises stress [17] and displacement magnitudes of the solution to the
elastic equation for one realisation are given in Figures 3 and 4, respectively.

In this example, quadrature points are obtained from interlacing higher order
polynomial lattice point sets [6]. In Table 4 we use the same example, but
use scrambled, interlaced Sobol points [5]. In this method, the estimator is a
random variable which has the advantage that one can obtain a statistical
error estimate via an unbiased estimator of the standard deviation, given by√√√√ 1

q− 1

q∑
v=1

[Q
(v)
N (uh,δ) −QN(uh,δ)]

2 ,

where Q(v)
N (uh,δ) , v = 1, 2, . . . , q , are q independent estimations of the

expectation value and QN(uh,δ) = q−1
∑q

v=1Q
(v)
N (uh,δ) is an estimation of

the mean.



4 Numerical experiments C268

Table 4: Numerical errors between QN(uh,δ) and ū∗ with different values
of δ using N = 210 scrambled, interlaced Sobol points (upper half of table)
and estimations of the standard deviations (lower half of table) using q = 16
estimations.

δ ‖ex‖ ‖ey‖ ‖ex‖∞ ‖ey‖∞
0.1000 3.25× 10−3 5.18× 10−3 2.34× 10−2 6.68× 10−2
0.0500 2.83× 10−3 1.46× 10−2 8.73× 10−3 3.93× 10−2
0.0250 8.68× 10−4 4.71× 10−3 2.45× 10−3 9.59× 10−3
0.0125 1.92× 10−4 9.97× 10−4 5.77× 10−4 2.00× 10−3
δ std. ‖ex‖ std. ‖ey‖ std. ‖ex‖∞ std. ‖ey‖∞
0.1000 2.41× 10−4 6.18× 10−4 1.02× 10−3 6.01× 10−3
0.0500 3.34× 10−5 2.30× 10−4 9.91× 10−5 2.87× 10−5
0.0250 4.34× 10−6 1.87× 10−5 1.86× 10−5 3.74× 10−6
0.0125 6.22× 10−7 2.41× 10−6 4.39× 10−6 2.89× 10−6

-3 -2 -1 0 1 2 3
0.5
1

1.5

Figure 3: (left) von Mises stress; and (right) vector displacement quiver plot.
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Figure 4: displacement magnitudes (in mm) in (left) x and (right) y directions.

5 Conclusions
We have discussed a numerical method to solve two-dimensional linear elastic-
ity with a random Dirichlet boundary condition and applied the techniques
to modelling human corneas with different shapes and sizes. The topic will
be of interests to mathematicians and medical scientists of interdisciplinary
research.
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