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Abstract

Modeling uncertainties in the input parameters of computer simula-
tions is an established way to account for inevitably limited knowledge.
To overcome long run-times and high demand for computational re-
sources, a surrogate model can replace the original simulation. We use
spatially adaptive sparse grids for the creation of this surrogate model.
Sparse grids are a discretization scheme designed to mitigate the curse
of dimensionality, and spatial adaptivity further decreases the neces-
sary number of expensive simulations. We combine this with B-spline
basis functions which provide gradients and are exactly integrable. We
demonstrate the capability of this uncertainty quantification approach
for a simulation of the Hokkaido Nansei–Oki Tsunami with anuga. We
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develop a better understanding of the tsunami behavior by calculating
key quantities such as mean, percentiles and maximum run-up. We
compare our approach to the popular Dakota toolbox and reach slightly
better results for all quantities of interest.
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1 Introduction
Computer experiments are commonly used to investigate real-world phe-
nomena, and modeling uncertainties in the simulation’s input parameters
takes into account the inevitably limited knowledge of the researcher. Un-
fortunately, run-times and the necessary computational resources increase
exponentially with the dimensionality of the model. This is known as the
curse of dimensionality. Sparse grids [3] are an established discretization
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Figure 1: (left) bathymetry of the simulation domain, including part of
Okushiri’s coast and the Monai valley (ellipse); and (right) underlying triangu-
lation with 16×16 triangles for illustration. In practice we use 64×64 triangles.

technique, designed to mitigate the curse of dimensionality. In this work we
use spatially adaptive sparse grids [9] that automatically refine towards the
quantity of interest. We apply higher-order basis functions, namely B-splines,
which generalize classical hat functions [14]. With the B-splines we perform
uncertainty quantification (uq) and optimization. B-splines and spatially
adaptive sparse grids have only recently been combined for uq [10, 11]. This
work demonstrates their competitiveness with popular and widely used uq
techniques for a relevant real-world application.

2 Tsunami model
In 1993 an earthquake in the Sea of Japan led to the Hokkaido Nansei–Oki
tsunami whose run-up was disproportionately large in the Monai valley on
the island of Okushiri. A 1/400 scale model of the region was constructed
in a 205m long water tank to reproduce the run-ups [6]. The experimental
data was made publicly available and the setting has become a benchmark
for tsunami prediction [7, 15]. Figure 1 illustrates the bathymetry of the
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benchmark.

2.1 Implementation of the tsunami benchmark

We model the benchmark with anuga [12], a fluid dynamics simulation
framework, which uses the finite-volume method to solve the non-linear shallow
water equations. The quantity of interest is the time-dependent average
height of the water layer in the Monai valley. Our implementation is based
on previous work [2], where it was shown that a multi-fidelity combination
technique approach converges towards a high accuracy combination technique
surrogate. In this work however, we investigate convergence towards the
simulation itself using a fixed number of 64× 64 triangles.

2.2 Wave shape parametrization

We investigate how different shapes of incoming tsunami waves influence the
run-up. For this the original wave is decomposed into Gaussian bumps. The
shapes of the individual Gaussian bumps are then varied, before the overall
energy of the wave is normalized to the energy of the original wave.

Formally, let W(t) be the original wave, depending on time t ∈ [0, 22.5]
in seconds. We set the initial residual r0(t) := W(t) and iteratively fit the
dth Gaussian bump with parameters

ηd, τd, νd := argminη,τ,ν

∫ 22.5
0

∣∣∣∣rd−1(t) − η exp(−(t− τ)2

2ν2

)∣∣∣∣2 dt , (1)

where ηd, τd and νd are the height, width and center of dth Gaussian bump,
respectively. The dth residual is defined as

rd(t) := rd−1(t) − ηd exp
(
−
(t− τd)

2

2ν2d

)
. (2)

We iterate (1) and (2) for d = 1, . . . , D , where D ∈ N+ is the number of
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Figure 2: decomposition of the (left) original wave W into (centre) D = 6

Gauss bumps. To create different wave shapes, the height of the dth Gauss
bump is varied, and then the energy of the wave is normalized. The L2-
difference between the original and artificial wave (right) is smaller than
0.00051m.

bumps, and parameterize the incoming wave as

Wp(t, ~θ) :=

D∑
d=1

θdηd exp
(
−
(t− τd)

2

2ν2d

)
, Wn

p (t,
~θ) :=

Wp(t, ~θ)‖W(t)‖2
‖Wp(t, ~θ)‖2

,

(3)
where ~θ := [θ1, . . . , θD] is a vector of the uncertain parameters which determine
the shape of the wave, ‖ · ‖2 is the L2-norm with respect to time t, and Wn

p is
the normalized wave.

Inside the implementation the time domain is discretized with 451 uniform
time steps tm, m = 1, . . . , 451 . Our objective function is therefore

f : RD → R451, ~θ 7→ (f1(θ), . . . , f451(θ))
T
, fm(~θ) =W

n
p (tm,

~θ) . (4)

We use D = 6 and assume the wave shape parameters θd to be i.i.d., following
a truncated normal distribution N(1.0, 0.125)|[0.5,1.5] centered at the same
point as the original wave. To better understand how the uncertainty in the
shape parameters influences the run-up, the uncertainty must be propagated
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through the model. However, a single evaluation of the model takes one
cpu-hour1, therefore we replaced the model by a surrogate.

3 Hierarchical not-a-knot B-splines
B-splines are widely used basis functions because of their local support and
numerically exact differentiability and integrability. They have been applied
in combination with sparse grids for interpolation, optimization and uq [10,
11, 16]. Let ξ := (ξ0, . . . , ξq+n) be a knot sequence, that is a non-decreasing
sequence of real numbers ξk, for k ∈ {0, . . . , q+n}, q ∈ N0 . The B-spline bnk,ξ
of degree n ∈ N0 and index k ∈ Z is defined as

bnk,ξ(x) :=

{
x−ξk

ξk+n−ξk
bn−1k,ξ (x) + ξk+n+1−x

ξk+n+1−ξk+1
bn−1k+1,ξ(x) n > 1,

χ[ξk,ξk+1](x) n = 0,
(5)

where χ[ξk,ξk+1](x) evaluates to one inside [ξk, ξk+1] and zero elsewhere. The
derivative of a B-spline is simply the difference of two B-splines of lower degree.
Without loss of generality, we restrict ourselves to the unit interval [0, 1] and
define the uniform knot sequence of level ` ∈ N0 and degree n ∈ N0 as
ξn,u` := (ξn,u`,0 , . . . , ξ

n,u
`,2`+2n

) , where ξn,u`,k := (k− n)h` for grid width h` := 2−` .
Simply using this finite uniform knot sequence does not suffice, because the
resulting B-splines do not fulfill the Schoenberg–Whitney conditions [13] at
the interval boundaries. However, this condition is necessary for the B-splines
to form a basis of the spline space corresponding to their knot sequence.

3.1 Not-a-knot condition

One approach to revalidate the Schoenberg–Whitney conditions are not-a-knot
B-splines [5]. The not-a-knot condition is motivated by requiring continuity

1Raijin supercomputer at nci Australia, a Fujitsu Primergy-Lenovo NeXtScale system.
Evaluations were distributed, whereby each individual evaluation was performed using one
node with 2× 8 core Intel Xeon E5-2670 (Sandy Bridge) 2.6GHz
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of the nth derivatives of all splines at the n−1
2

left-most and n−1
2

right-most
knots. This requirement is equivalent to removing the (n − 1) knots from
the knot sequence, but keeping them in the set of interpolation nodes. More
details can be found in our previous work [11]. To significantly mitigate
the curse of dimensionality the boundary points are omitted too. We apply
the not-a-knot condition again, removing another two knots from the knot
sequence. With this trade-off we can remove the two boundary points and
their corresponding basis functions without losing approximation quality.

For the definition of sparse grids we require hierarchical basis functions.
Let I` := {0 < k < 2` | k odd} be the hierarchical index set of level `,
then {bn`,k | k ∈ I`} are the univariate hierarchical B-splines of level `. The
multivariate equivalents are defined via tensor products.

4 Sparse grids
For full uniform isotropic tensor product grids the number of grid points in-
creases exponentially with the number of dimensions D and has order O(h−D)
for grid width h < 1 . Sparse grids [3] are a discretization scheme designed
to mitigate this curse of dimensionality. The number of inner grid points
of a regular sparse grid of level ` with grid width h` only increases like
O(h−1

` (log2 h−1
` )D−1) . At the same time, the L2-interpolation error for B-

splines of degree n still decays asymptotically like O(hn+1` (log2 h−1
` )D−1) , if

the objective function is sufficiently smooth [14], which is only slightly worse
than the full grid error convergence rate of O(hn+1` ).

Regular sparse grids We define the hierarchical subgrid of level ~l with
grid widths hld := 2−ld as H~l := {~x~l,~i = (xl1,i1 , . . . , xlD,iD) | ~i ∈ I~l} for
xld,id := idhld . The corresponding hierarchical subspace W~̀ of level ~̀ is then
defined as the span of the according basis functionsW~l := span{bn~i,ξn,u

~l

|~i ∈ I~l} .

The boundary sparse grid Vb` and the non-boundary sparse grid Vs` of level `
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Figure 3: (left) hierarchical B-spline basis; (centre) hierarchical not-a-knot
B-spline basis; and (right) hierarchical non-boundary not-a-knot B-splines
of degree n = 3 and levels ` ∈ {0, 1, 2, 3, 4} , respectively. The not-a-knot
condition is indicated with crosses.

are defined as

Vb` :=
⊕
|~̀ ′|16`

W~̀ ′ , Vs` :=
⊕

|~̀ ′|16` , ` ′d>1 ,∀d=1,...,D

W~̀ ′ , (6)

where |~̀ ′|1 :=
∑D

d=1 `
′
d is the discrete L1 norm of ~̀ ′.

Spatial adaptivity Spatially adaptive sparse grids can be refined automat-
ically according to a specified quantity of interest, potentially significantly
reducing the number of grid points required for desired approximation qual-
ity [9]. We use the standard surplus criterion, which makes use of the hierarchy
of the basis, where larger interpolation coefficients indicate a worse local ap-
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proximation. Thus we iteratively refine the grid point corresponding to the
largest interpolation coefficient [11].

5 Numerical results
We created our sparse grid surrogates with the toolbox sg++ [9], a versatile
open-source framework for spatially adaptive sparse grids.

5.1 Polynomial chaos expansion

To demonstrate the performance of our approach we compare it to one of uq’s
most popular tools: polynomial chaos expansion (pce) [4, 17]. Generalized
polynomial chaos is based on the Wiener–Askey scheme [17]. This scheme
specifies basis functions, which are orthogonal with respect to the distributions
of the uncertain parameters. Our application has normally distributed pa-
rameters which correspond to Hermite polynomials. pce generally results in
good approximations and allows direct access to stochastic moments without
further calculations. The downside of pce is the strict specification of the
basis functions, only depending on the distributions and not on the actual
objective function. For comparison and verification of our results we used the
state-of-the-art toolbox Dakota [1] and its implementation of pce.

5.2 Accuracy of the surrogate

We measure the approximation errors based on 10 000 parameters randomly
sampled from the joint parameter distribution. The results are seen in
Figure 4. Because they have too many points on the boundary the not-a-knot
boundary splines perform significantly worse than the alternatives. Omitting
the boundary points and using the non-boundary not-a-knot B-splines instead
yields the best approximation quality overall. We use cubic B-splines here
because we require the derivatives of the surrogate. However, the underlying
simulation is only first order accurate because of shocks, and thus none of the
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Figure 4: (left) average L2-error in meters for regular and spatially adaptive
sparse grids with boundary (B), non-boundary sparse grids (nB) and pce; and
(right) forward uncertainty quantification of the tsunami model, resulting in
percentiles, the expected value and the overall maximum calculated with sg++.

methods reach their optimal convergence rate. Also, all methods stagnate
around 10−3m. This stagnation is caused by tiny inaccuracies in the inputs.
Using a six-dimensional decomposition of the original wave into Gauss bumps,
the incoming wave itself is represented only up to one millimeter accuracy.
This also explains the only slight improvement from spatial adaptivity. When
the domain is sufficiently scanned to make use of the adaptivity, maximum
accuracy is already reached.

5.3 Uncertainty quantification

By propagating the uncertainty of the input parameters through the surrogate,
we better understand how they influence the quantities of interest. The results
of this section are summarized in Figure 4.

Percentiles We created a set of 100 000 samples drawn from the joint
parameter distribution and evaluated the surrogate in each of these parameters.
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Then we derived the 5th and 95th percentile, which are the values below
which 5% or 95% of the evaluations are found, respectively.

Mean By using a quadrature formula of appropriate order, B-splines can be
integrated exactly. We use integration to calculate the surrogate’s mean with
stochastic collocation. For pce the mean calculation is even simpler. Because
the underlying basis functions are orthonormal, the mean of the surrogate is
simply the expansion’s first coefficient. We validate the calculated means using
a reference solution based on a non-boundary not-a-knot B-spline surrogate
of degree n = 3 on a sparse grid of level ` = 6 with 10 625 grid points. Our
adaptive surrogate based on 2 714 grid points has an L2 difference of 0.0026m
to the reference mean and its worst deviation for any time step is 0.0165m.
The Dakota pce approximation, which uses 2 465 function evaluations, has
an L2 difference of 0.0030m and its worst deviation is 0.0191m.

Shape optimization To find the wave shape leading to the largest run-
up, we optimized the objective function over time, searching for θmax :=
argmax~θ[maxm f̃m(~θ)] . We calculate the gradient of our surrogate using the
recursive definition of B-splines. This allows us to optimize the surrogate
using the gradient descent algorithm, where we determine the step sizes
using the Armijo line search algorithm [8]. We optimized the surrogates
from Section 5.2 and found that the maximum value is on the boundary of
the domain. Thus, although its approximation is less accurate in general, the
boundary sparse grid gives the best result,

θmax = [1.5, 0.5, 1.5, 0.671875, 0.5, 0.5] , max
m
f̃m(θ

max) = 31.057m. (7)

The run-up value is larger than the values of any of the 100 000 evaluations
we used to calculate the percentiles. The Dakota toolbox does not offer
optimization based on its pce surrogate. Instead it uses the mesh adaptive
direct search algorithm (mads) based on quadratic polynomials. This needs
another 2 500 evaluations of the objective function, in contrast to sg++, which
performed all operations on the same initially constructed surrogate. Dakota’s
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optimization then results in 31.02m run-up height, a little smaller than our
result.

6 Conclusion and outlook
We have performed a uq investigation of a computationally expensive tsunami
benchmark using B-splines on adaptive sparse grids. Using a moderate number
of evaluations of the simulation, we created an accurate surrogate. With this
surrogate we investigated how different shapes of the incoming tsunami wave
influence the run-up. B-splines can be evaluated very quickly, are exactly
integrable and give direct access to gradients. Exploiting these properties,
we calculated percentiles, the mean and the maximum of the surrogate. For
comparison and verification we used the toolbox Dakota. For all quantities of
interest our software sg++ performed slightly better than Dakota. In future
work we plan to not only use incoming waves of different shapes, but to derive
the tsunami directly from a simulated earthquake.
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