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Abstract

State estimation is the task of approximately reconstructing a solu-
tion u of a parametric partial differential equation when the parameter
vector y is unknown and the only information ism linear measurements
of u. Cohen et al. [arXiv:2009.02687, Nov. 2020] proposed a method to
use a family of linear reduced spaces as a generalised nonlinear reduced
model for state estimation. A computable surrogate distance is used to
evaluate which linear estimate lies closest to a true solution of the pde
problem. In this article we propose a strategy of coarse computation of
the surrogate distance while maintaining a fine mesh reduced model, as
the computational cost of the surrogate distance is large relative to the
reduced modelling task. We demonstrate numerically that the error
induced by the coarse distance is dominated by other approximation
errors.
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1 Introduction
Complex physical systems are often modelled by a parametric partial differ-
ential equation (pde). We consider the general problem of the form

A(y)u = f(y) , (1)

where A(y) : H → H′ is an elliptic second order operator and H is an
appropriate Hilbert space. The problem is defined on a physical domain
D ⊂ R2,3 , and the parameter y is within a parameter domain Y, typically
a subset of Rd where d might be large. Each parameter y ∈ Y is assumed
to result in a unique solution u(x, y) but we mostly suppress the spatial
dependence x ∈ D and write u(y). We denote all H-norms by ‖ · ‖ := ‖ · ‖H
and inner-products 〈·, ·〉 := 〈·, ·〉H , and use an explicit subscript if they are
from a different space.

In practical modelling applications it is often computationally expensive to
produce a high precision numerical solution to the pde problem (1). However,
to our advantage the mapping u : y→ H is typically smooth and compact,
hence the set of solutions over all parameter values will be a smooth manifold,
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possibly of finite intrinsic dimension. We define the solution manifold as
follows, assuming from here that it is compact,

M := {u(y) : y ∈ Y} .

The methods proposed in this article extend on reduced basis approximations.
A reduced basis is a linear subspace V ⊂ H of moderate dimension n :=
dim(V) 6 dim(M) 6 dim(H) . We use the worst-case error as a benchmark,
defined as

ε(V,M) = max
u∈M

dist(u, V) = max
u∈M
‖u− PVu‖ , (2)

where PV is the orthogonal projection operator onto V . There are a variety
of methods to construct a reduced basis with desirable worst-case error
performance, and here we concentrate on greedy methods that select points
in M which become the basis for V . We discuss these methods further in
Section 1.1.

A reduced basis can be used to accelerate the forward problem. One can
numerically solve the pde problem for a given parameter y by using V directly
in the Galerkin method, making the numerical problem vastly smaller while
retaining a high level of accuracy. A thorough treatment of the development
of reduced basis approximations is given by Hesthaven, Rozza, and Stamm [5].

In this article we are concerned with inverse problems. In this setting it is
assumed that there is some unknown true state u (which could correspond
to the state of some physical system), and we do not know the parameter
vector y that gives this solution. Instead, we make do with a handful of
m linear measurements `i(u). These measurements are used to make some
kind of accurate reconstruction of u (state estimation) or a guess of the true
parameter y (parameter estimation).

The parametrized background data weak (pbdw) approach introduced by
Maday et al. [6] gives a straightforward procedure for finding an estimator u∗
of the true state u, using only the linear measurement information and a
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reduced basis V . However, one limitation is that the estimator error ‖u∗−u‖ is
bounded from below by the Kolmogorov n-width given by

dn(M) = inf
dim(V)=n

sup
u∈M

dist(u, V) , (3)

where the infimum is taken over all n dimensional linear spaces in H. The n-
width is known to converge slowly for many parametric pde problems.

We review methods for constructing a family of local linear reduced models
and a nonlinear estimator u∗ using a surrogate distance model selection
procedure. We propose the use of coarser finite element meshes to perform
this selection. This coarse selection strategy is motivated by the observation
of Cohen et al. [3] that the model selection is by far the most computationally
costly component in the nonlinear estimation routine. Finally, in Section 4 we
examine numerical examples of surrogate distances over different mesh widths,
and see that they make insubstantial impacts to the nonlinear estimator.

1.1 Linear reduced models

A reduced basis is a linear space of the form V = span(u1, . . . , un) ⊂ H ,
where the ui = u(yi) ∈M . The parameter values yi are typically chosen in
some iterative greedy procedure to try and minimise ε(V,M) at each step.

We define a greedy procedure as follows: given V of dimension n and a finite
subset Ỹ of Y, to produce an (n+ 1)-dimensional reduced space we find the
parameter yn+1 ∈ Ỹ which gives us the largest dist(u(yn+1), V) = ‖u(yn+1)−
PVu(y

n+1)‖. This parameter yn+1 can be found through a brute-force search
of the finite set Ỹ. We then augment the space V with un+1 = u(yn+1) . This
simple strategy, in some cases [1], yields a reduced basis that is optimal with
regards to the Kolmogorov n-width of M. In this setting the quantity

εest(V,M) := max
y∈Ỹ
‖u(y) − PVu(y)‖ (4)

serves as a reasonable and calculable estimate of ε(V,M), as shown by Cohen
et al. [4].
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In practice, we also allow V to be an affine space, with an offset ū, such that

V = ū⊕ span(u1, . . . , un) .

Typically we take ū to be an approximate barycenter of M. From now on we
use the term reduced space or model rather than basis.

With V chosen, we now consider the state estimation problem. We havem pieces
of linear data `i(u) for i = 1, . . . ,m of the unknown state u, and the `i ∈ H′ .
We assume we know the form of the functionals `i and hence the Riesz repre-
senters ωi for which 〈ωi, u〉 = `i(u) . These ωi define a measurement space
and the measurement vector of u, respectively,

W := span(ω1, . . . ,ωm) and w = PWu .

Note here we assume no noise in our measurements, but allowing for random
noise is straightforward and has been considered by Maday et al. [6] and
Binev et al. [2].

The pbdw approach, developed by Maday et al. [6], seeks a reconstruction
candidate or estimator u∗(w) that is close to u, but that agrees with the
measurement data, that is PWu∗(w) = PWu = w . Maday et al. [6] define an
estimator

u∗(w) = argmin
v∈w+W⊥

dist(v, V) ,

which can be calculated through a set of normal equations of size n ×m
using the cross-Gramian matrix of the bases of W and V . Given only the
measurement information w, the measurement space W, and the reduced
space V , this estimator u∗(w) is an optimal choice [2]. The estimator lies in
the subspace u∗(w) ∈ V ⊕W .

We require that W⊥ ∩ V = {0} for this reconstruction algorithm to be well
posed, as otherwise there are infinitely many candidates for u∗. This in turn
requires that n = dim(V) 6 dim(W) = m , since dim(V) > dim(W) implies
that there must be at least one vector in V that is perpendicular to W. This
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dimensionality requirement is reflected in the error analysis. We define an
inf-sup constant

µ(V,W) := max
v∈V

‖v‖
‖PWv‖

, (5)

which is the inverse of the cosine of the angle between V and W and we have
µ(V,W) ∈ [1,∞] . For µ to be finite, we require W⊥ ∩ V = {0} . The inf-sup
constant plays the role of a stability constant for our linear estimator as we
have the well known bound

Ewc = max
u∈M
‖u− u∗(PWm

u)‖ 6 µ(V,W) ε(V,M) ,

as demonstrated by Binev et al. [2]. From the definitions we have ε(V,M) >
dn+1(M) , hence this reconstruction error can at best be the (n+ 1)-width
of M.

2 Nonlinear reduced models
A fundamental drawback of linear reduced models is the slow decay of the
Kolmogorov n-width for a wide variety of pde problems. To circumvent
this limitation, a framework for non-linear reduced models and their use for
state estimation was presented by Cohen et al. [3]. The proposal involves
determining a partition of the manifold

M =

K⋃
k=1

Mk ,

and producing a family of affine reduced space approximations Vk to each
portion Mk. Each space has dimension nk = dim(Vk) , requiring nk < m for
well-posedness.

Given any target ε > 0 and µ > 1 it is possible with large enough K to
determine a partition and family of reduced spaces Vk that satisfy

εk := ε(Vk,Mk) 6 ε and µk := µ(Vk,W) 6 µ for all k = 1, . . . , K , (6)
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in which case we say the family (Vk)
K
k=1 is (µ, ε)-admissible. A slightly looser

criteria on the partition can also be satisfied: given some σ > 0 , we say the
family (Vk)

K
k=1 is σ-admissible if µkεk 6 σ for all k = 1, . . . , K . The existence

of both (µ, ε) and σ-admissible families follow from the compactness of M;
Cohen et al. [3] give a full demonstration.

In practice one may construct a σ-admissible family in the following way. Say
we are given a partition of the parameter space (Yk)

K−1
k=1 with ∪K−1k=1Yk = Y ,

and the associated partition of the manifold (Mk)
K−1
k=1 . We have a reduced

space Vk approximating Mk, produced by a greedy algorithm on a finite
sample set Ỹk ⊂ Yk . With each Vk we have an associated error estimate
σest,k = µk(V,W)εest,k(V,M) . We pick the largest σest,k , with index k̃ say,
and we split the cell Yk̃ in half for each parameter coordinate direction
i ∈ {1, . . . , d} , resulting in two reduced spaces V+

k̃,i
and V−

k̃,i
for each split

direction. We take the split direction i to be the one with the smallest
maximum error max(σ+

k̃,i
, σ−

k̃,i
) , and we enrich the family (Vk)

K−1
k=1 with the

two new reduced spaces, making sure to remove Vk̃ from the collection. More
details of the splitting procedure are provided by Cohen et al. [3].

2.1 Surrogate reduced model selection

Based on a measurement w, each affine reduced space has an associated
reconstruction candidate that is found through the pbdw method

u∗k(w) := argmin{dist(v, Vk) : PWv = w} for k = 1, . . . , K . (7)

If we happen to know that the true state u originates from some Mk, then
we would best use u∗k as our estimator. In this scenario we would have an
error bound of ‖u − u∗k(PWu)‖ 6 εkµk < σ . This information about the
true state u is not available in practice, so we require some other method to
determine which candidate u∗k to choose.

Consider a surrogate distance S(v,M) from v to M that satisfies the uniform
bound for 0 < r 6 R ,

r dist(v,M) 6 S(v,M) 6 R dist(v,M) . (8)
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If this surrogate distance is computable, then we can use it to find a surrogate
selected estimator by choosing

k∗ := argmin{S(u∗k,M) : k = 1, . . . , K}, and define u∗(w) := u∗k∗(w) , (9)

noting that as there is a dependence on w we write k∗(w). We define an
error benchmark

δσ := sup{‖u− v‖ : dist(u,M), dist(v,M) 6 σ, PWu = PWv} .

This quantity takes in to account errors from model bias, and we have the
following result.

Theorem 1. Given a σ-admissible family of affine reduced spaces (Vk)
K
k=1 ,

the estimator based on the surrogate selection (9) has worst-case error bounded
above by

max
u∈M
‖u− u∗(PWu)‖ 6 δκσ , (10)

where κ = R/r depends only on the uniform bounds of the surrogate distance.

The proof is detailed in Theorem 3.2 by Cohen et al. [3]. Note that even
given some optimal nonlinear reconstruction algorithm, our best possible
error would be δ0, and it is not bounded from below by dn(M). We remark
also that δσ > σ .

3 Affine elliptic operators
Say the operator A(y) in (1) is uniformly bounded in y with uniformly
bounded inverse. That is, for some 0 < r 6 R <∞ we have

‖A(y)‖H→H′ 6 R and ‖A(y)−1‖H′→H 6 r−1 , y ∈ Y . (11)

Then we can show that for any v ∈ H the residual of the pde

R(v, y) := ‖A(y)v− f(y)‖H′
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satisfies the uniform bound r‖v−u(y)‖ 6 R(v, y) 6 R‖v−u(y)‖ . We define

S(v,M) = min
y∈Y

R(v, y) ,

and then we arrive at a surrogate distance that satisfies the uniform bounds
of (8). Using this surrogate in the selection (9) to define u∗(w), we have a
nonlinear reconstruction algorithm with the error guarantees of (10).

We now make the further assumption that the operator A(y) and source
term f(y) have affine dependence on y. That is,

A(y) = A0 +

d∑
j=1

Aj and f(y) = f0 +

d∑
j=1

yjfj .

The residual is calculated using representers in H. We define ej as member
of H that satisfies

〈ej, z〉 = 〈Aj(y)v− fj, z〉H′,H for all z ∈ H , (12)

and now write e(y) := e0 −
∑d

j=1 yjej to denote the representer of the overall
residual problem. The residual is equal to R(v, y) = ‖e(y)‖ , and determining
the surrogate distance is a quadratic minimisation problem

S(v,M)2 = min
y∈Y
‖e(y)‖2 = min

y∈Y

∥∥e0 + d∑
j=1

yjej
∥∥2.

This leads to a constrained least squares problem that can be solved using
standard optimisation routines, using the values 〈ei, ej〉 for 0 6 i, j 6 d .

Technically it is possible to have a A(y) and f(y) with nonlinear dependence
on y, but this comes at the cost of having to solve a nonlinear least squares
problem to evaluate S(v,M). In certain model cases this is a convex opti-
misation problem, for example the pde examined in Section 4 if a(x, y) is
uniformly convex in y.
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3.1 Finite element residual evaluation

In practice these calculations take place in a finite element space Hh that is
the span of polynomial elements on a triangulation Th of width h > 0 . In this
setting the residual is Rh(v, y) = ‖eh(y)‖ where eh(y) = e0,h −

∑d
j=1 yjej,h

and the ej,h ∈ Hh satisfy the variational problem

〈ej,h, z〉 = 〈Aj(y)v− fj, z〉H′,H for all ∈ Hh . (13)

Naturally we define Sh(v,M) := miny∈YRh(v, y) . Note that when we sub-
tract (12) from (13) we obtain 〈eh(y) − e(y), z〉 = 0 for all z ∈ Hh , meaning
that eh(y) − e(y) ⊥ Hh .

We write y∗ = argminy∈YR(v, y) to be the minimiser selected in S(v,M),
and y∗h the equivalent for Sh(v,M). In general y∗ 6= y∗h , but we have

|S(v,M) − Sh(v,M)| = |R(v, y∗) − Rh(v, y
∗
h)|

6 |R(v, y∗) − Rh(v, y
∗)|+ |R(v, y∗h) − Rh(v, y

∗
h)|

6 ‖e(y∗) − eh(y∗)‖+ ‖e(y∗h) − eh(y∗h)‖ , (14)

where in the last step we used

|R(v, y) − Rh(v, y)| =
∣∣‖e(y)‖− ‖eh(y)‖∣∣ 6 ‖e(y) − eh(y)‖ .

Thus the convergence of Sh to S depends on the finite element convergence of
solutions eh to e. This convergence is determined by the regularity of e(y),
which depends on the smoothness of the data A(y)v − h and the so called
Riesz lift implied in the variational problem (12).

Recall that A(y) in (1) is a second order symmetric elliptic operator. If
we assume homogeneous Dirichlet boundary conditions on ∂D and that
f(y) ∈ L2(D) , then a natural choice for our ambient space is the Sobolev
space H = H10(D) , with ‖ · ‖ = ‖ · ‖H1

0(D) . In this setting the solutions e(y)
of (12) are the weak solutions of the Poisson problem with homogeneous
Dirichlet boundary conditions

∇2xe(y) = A(y)v− f(y) on D, with e(y) = 0 on ∂D, (15)
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where we have written ∇2x to denote the Laplacian in the spatial variables,
recalling that we have the unwritten spatial dependence in e(y) = e(x, y) .

In our surrogate model selection, e(y) depends on u∗k(w). This estima-
tor u∗k(w) lies in Vk ⊕W . As Vk is the span of some solutions selected
from Mk, the smoothness of u∗k(w) will depend on the smoothness of all
solutions of the pde problem and of the measurement functionals ωi.

The convergence of eh to e in the weak form of (15) is well known in a wide
variety of settings, for example we have the classical result

‖eh(y) − e(y)‖ 6 ch‖A(y)v− f(y)‖L2(D) , (16)

which is applicable in a wide variety of situations. Under these circumstances
we thus have that |S(v,M) − Sh(v,M)| ∼ h .

3.2 Coarse surrogate evaluation

Say we construct a family of reduced spaces (Vk)
K
k=1 where each family

Vk = uk+span(u1h′, . . . , u
nk

h′ ) , and the solutions uih′ are numerically calculated
with respect to a triangulation Th′ with mesh-width h′. Our estimators u∗k(w)
will be in Hh′ .

We consider Th′ our fine mesh, and nominate another triangulation Th with
h′ < h to be a coarse mesh. We use this coarse mesh to compute the surrogate
distance, noting that Sh(v,M) may be orders of magnitude faster to compute
than the fine mesh equivalent. This will necessarily introduce an inaccuracy
in the surrogate selection; however, we maintain the high fidelity of the fine
mesh reduced space approximations Vk.

If Th′ is a fine mesh that contains Th in the sense that Hh ⊂ Hh′ , then the
variational problem (13) is straightforward as we can calculate the inner-
product 〈A(y)v− f(y), z〉 based on the known relationships between the basis
elements of Hh and Hh′ . Furthermore, the error ‖eh(y) − eh′(y)‖ , and hence
|Sh(v,M) − Sh′(v,M)| , is bounded above by a constant times ‖e(y) − eh(y)‖
through the same reasoning as in (14). If Th′ does not contain Th, then the
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same error estimates still apply, but we will require interpolation schemes to
construct the variational problem.

4 Numerical tests
We present two separate studies of the surrogate as evaluated in finite element
spaces. On the unit square D = [0, 1]2 we consider the pde

−∇x · (a(x, y)∇xu(x, y)) = 1 , with u(x, y) = 0 on ∂D ,

where our parametric diffusivity field is given by a(x, y) = 1+
∑16

j=1 cjyjχDj
(x) .

Here the Dj denote squares of side length 1/4 that subdivide the unit square
in to 16 portions, and χDj

is the indicator function on Dj. The parameter
range is the hypercube Y = [−1, 1]16 , and the coefficients are cj = 0.9j−1 or
cj = 0.99j−1 , meaning that a(x, y) > 0 , but when cj = 0.99j−1 the a(x, y)
become closer to zero and the pde problem can lose ellipticity.

We perform a space discretisation by the Galerkin method using P1 finite
elements to produce solutions uh′(y), with a fine triangulation on a regular
grid of mesh size h′ = 2−7 . In the tests that follow, we evaluate Sh(v,M)
with coarse meshes of size h = 2−s with s = 2, . . . , 6 .

We generate training sets to compute the reduced models, and test sets on
which we test the reconstruction algorithms. The training set M̃tr is the
collection of pde solutions for Ntr = 1000 random samples Ỹtr = {ytrj }j=1,...,Ntr

drawn independently and uniformly on Y = [−1, 1]16 . The test set M̃te is
created from Nte = 100 independent parameter samples that are distinct
from the training set samples.

In our test the measurement space W is a collection of m = 8 measurement
functionals 〈ωi, u〉 = `i(u) = |Bi|

−1
∫
uχBi that are local averages in small

areas Bi which are boxes of width 2h = 2−6 , each placed randomly in the
unit square.



4 Numerical tests C204

2 3 4 5 6
Triangulation div s, h = 2 s

10
4

10
3

av
g|

h
h′

|

Average abs. error of h(u * (w), )
cj = 0.9j 1

cj = 0.99j 1

2 3 4 5 6 7
Triangulation div s, h = 2 s

10
0

10
1

10
2

S
ec

on
ds

CPU time to calculate (u * , )
cj = 0.9j 1

cj = 0.99j 1

Figure 1: Left: average absolute error of the surrogate Sh; Right: the cpu wall
time for the computation of Sh for all Nte test points

In our first test we compute a single reduced space V using the greedy
procedure on M̃tr . For each test candidate u ∈ M̃te we calculate u∗(PWu).
In Figure 1 we plot the difference between the coarse and fine surrogate
distances |Sh(u∗,M) − Sh′(u

∗,M)| . This error is significantly dominated by
the calculated value of the estimator error (4), σest := µ(V,W) εest(V,M) as
we found σest ≈ 100 for cj = 0.9j−1 and σest ≈ 101 for cj = 0.99j−1 . This
dominates the errors presented in Figure 1 significantly.

We observe a linear relationship in the right plot of Figure 1. The linear best
fit of log(avg

M̃te |Sh−Sh′ |) and log(h) = −s has slope 1.51, which implies that
on average

|Sh − Sh′ | ∼ h
1.51 .

This exponent slightly exceeds the theoretically guaranteed exponent of one
given in Section 3.1, and is likely due to the extra regularity of f in this
example.

For the second test we examine the impact of using the coarse surrogate Sh(u∗k,M)
for model selection. We build the σ-admissible families as outlined in Section 2
using the greedy splitting of Y = [−1, 1]16 . At each point the cells Yk are
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Table 1: Agreement of coarse model selection out of Nte = 100 test points
u ∈ M̃te .

cj = 0.9j
−1 cj = 0.99j

−1

Mesh width h 2−3 2−4 2−5 2−6 2−7 2−3 2−4 2−5 2−6 2−7

#{k∗h(w) = k
∗
h′(w)} 97 100 100 100 100 88 94 96 98 100

#{k∗h(w) = k
∗
true(u)} 74 77 77 77 77 58 59 61 65 64

rectangular, which we split in half in coordinate directions. We split the
parameter space seven times, resulting in K = 8 local reduced spaces.

For each test candidate u ∈ M̃te we have K possible reconstructions u∗1(w), . . . ,
u∗K(w) . We use the coarse surrogate in the model selection (9), writing
k∗h(w) = k

∗
h(PWu) to make the dependence on h and w clear, and we inspect

how often it agrees with the fine selection k∗h′(w) for all test points u. We
also compare this to the ‘true’ selection k∗true(u) for which u ∈Mk∗true

.

Table 1 demonstrates that k∗h(w) agrees with k∗h′ the vast majority of time
from h = 2−4 onwards, for both cases of cj. We also see that the fine
selection k∗h′ agrees with the true selection 77 times out of 100 for cj = 0.9j−1
and 64 times for cj = 0.99j−1. That is, it picks the estimator u∗k(w) that
is trained on the portion of manifold Mk that u originated from. Figure 2
plots the histogram of selections k∗h′ and k∗true(u), recalling that they are a
number in {1, . . . , 8}. We see broadly similar patterns in the reduced model
selection. Given the cpu time savings that we see in Figure 1, we conclude
that model selection through a coarse surrogate distance is a worthwhile
numerical strategy.
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