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Abstract

Pneumatic conveying is the transportation of bulk solids in enclosed
pipelines via a carrier gas, typically air. The local flow pattern in a
pipeline is a function of the conditions, and slug flow can form under
certain conditions. Slug flow is a naturally occurring, wave-like flow
where the bulk material travels along the pipeline in distinct ‘slugs’.
Establishing the environment for the formation of slugs within the
conveying system is essential to maximise the overall system efficiency
and minimise damage to the bulk material. misg2021 considered a
wide range of mathematical approaches to slug formation and travel.
These two key problem areas have the most significant potential to
impact the system design and efficiency. Critical interconnected facets
of pneumatic conveying systems were investigated and an overview for
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future work was developed. Many of the avenues uncovered during the
misg2021 require more time for in-depth analysis. This analysis and
framework will aid in optimising conveying system design and provide
insight to construct more efficient pneumatic conveying systems.
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1 Introduction

The problem brought to misg2021, held at the University of Newcastle in
person and online, was to model slug flow pneumatic conveying, specifically,
the formation of slugs and their motion. Pneumatic conveying is the trans-
portation of bulk solids in pipelines via a carrier gas, typically air. While
not as energy efficient as mechanical conveyors, such as belts, pneumatic
conveyors offer several unique advantages. The low number of moving parts
makes pneumatic conveyors relatively simple and economical to maintain.
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The option for flexible routing through bends is another significant advantage
over mechanical conveyors. The enclosed nature of the conveying is why over
50% of industrial applications of pneumatic conveyors are found in the food
and pharmaceutical industries (PCSMS 2019), where the need for isolating
the conveyed material from the surrounding environment is greatest. However,
pneumatic conveyors are also readily found in the mining, rubber, plastics
and ceramics industries—with a combined global market size of US$25 billion
in 2018 (PCSMS 2019). The local flow pattern in a pipeline depends on
several interlinked variables, including the operating conditions regarding the
amount of solids and gas fed into a pipeline, the bulk material properties,
and the pipeline layout and geometry. However, globally the possible flow
patterns are primarily dependent on the bulk material properties.

For materials with particles that are cohesionless (Tsuji, Tanaka, and Ishida
1992), have a narrow particle size distribution (Deng and Bradley 2016), and
are of high sphericity (Hilton and Cleary 2011), the possible flow patterns are
shown in Figure 1. This figure shows that a relative increase in the solids mass
flow rate, or a decrease in the gas mass flow rate, results in more concentrated
flows, culminating in slug flow.

Slug flow is a naturally occurring wave-like flow where the bulk material
travels along the pipeline in distinct ‘slugs’. In horizontal pipelines the
waves propagate through a stationary bed of material between slugs that
partially fill the pipeline. While almost anything can be conveyed in a
dilute phase, the disadvantages of this mode of transport are the high gas
use and particle attrition or wear rates due to the high velocities. The
higher solids concentrations and lower velocities of slug flow naturally remedy
the disadvantages of dilute phase flow, albeit at the cost of a much more
complicated and dynamic flow.

For slug flow, the many and often interlinked variables relating to operating
conditions, bulk material properties, and pipeline parameters remain largely
unknown. Because of this complexity, slug flow is often overlooked and
replaced by less favourable dilute phase systems due to the increased reliability
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Figure 1: Possible modes of flow for a bulk material capable of slug flow.

of dilute systems. Higher running costs for slug flow systems are intrinsically
linked to a lack of understanding of slug flow’s physical mechanisms. Hence,
developing an effective slug flow system often relies on expensive one-to-one
scale trials. Reliance on conveying trials and the development of methods
centred around these trials means the field is highly empirical, and much of
the theory surrounding dense system design, in general, is from models fitted
to collected data (Shijo and Behera 2021). In many cases, design is experience-
based, whereby an existing, reliable slug flow system is duplicated without
considering differences in material properties or operating conditions. This is
a problematic approach since published results demonstrate the importance
of considering material properties in design (Deng and Bradley 2016; Hilton
and Cleary 2011; Pan 1999; Pahk and Klinzing 2012; Li et al. 2014; Nied,
Lindner, and Sommer 2017).

The complexity of the flow, coupled with development procedures that are
heavily reliant on conveying trials and empiricism, generally means that
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the modelling of slug flow has often resulted in oversimplification. Such
a simplification is that the pressure drop in the air pockets between slugs
is neglected since most pressure loss is over the slugs. Slugs can then be
combined into a ‘total’ slug length, greatly simplifying the analysis. This
simplification, along with analogies to fields such as porous media and bulk
solids mechanics, has generally been the approach in most models (Konrad
1980; Mi and Wypych 1994; Pan and Wypych 1997; Yi 2001; Lecreps et al.
2014a; Shaul and Kalman 2015).

However, there are several obvious and nuanced issues with this approach.
Firstly, combining slugs into a single length assumes linearity in the pressure
drop with slug length. Validating this assumption is difficult with measure-
ments due to the dynamic nature of slugs, and there is evidence to support
linear (Pan and Wypych 1997) and nonlinear profiles (Lavrinec et al. 2019).
Secondly, the analysis assumes existing slug structures are in a steady state.
The steady assumption, along with combining slugs into a single length,
immediately neglects the dynamic nature of individual slugs. Furthermore,
assuming that the slug structures are already formed neglects how slugs
begin in the first place. Consequently, slug formation mechanisms and slug
dynamics have received little attention.

misg2021 considered a wide range of mathematical approaches to the two
key problem areas that have the most significant potential to quickly impact
the system design and efficiency, which are conditions for slug formation and
requirements for stable slug travel.

2 Slug Formation

Due to the reliance of most analysis tools on assuming steady conditions,
transient phenomena have been largely understudied within the field. In
systems that exhibit slug flow, the slug velocity consistently exceeds the
velocity of the particles in the system (a travelling wave solution). This
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behaviour is due to the particle exchanges between a slug and an underlying
layer of solid material. Establishing the environment for the formation of
slugs within the conveying system is vital to maximising the overall system
efficiency. This section considers ideas and theories from related fields to
better understand the situations that cause slugs to form. Futire investigation
should provide some definitive relationships between the granular material and
the optimal design of the conveying system. Such optimisations might include
considering the influence of the pipeline radius, material (corresponding to
wall friction and shear forces), and driving pressure. Due to the large number
of parameters, the current empirical methods are not practical for testing
all combinations. Therefore, any generalisations that may be obtained from
a more fundamental modelling approach would be beneficial. This section
focuses on slug formation, a natural starting point for assessing slug flow
outside the typically assumed steady conditions.

2.1 Mass Transport

This section considers a momentum exchange principle to explain material
deposition within the pneumatic conveying system, resulting in slug formation.

For the basis of this model, we consider an undisturbed fluid flowing within
the conveying pipe. Due to the shear forces along the edges of the pipe, the
velocity attains its maximum value at a location that maximises distance from
the pipe walls (i.e., at the centre). Hence, before the addition of particles
to the system, there exists velocity variation within the pipe. With the
principle of momentum exchange, we assume that the velocity of a particle is
proportional to the velocity of the gas in the nearby region. Therefore, pipe
locations with the highest gas velocity correspond to particle transport, and
low gas velocity areas become net deposition locations.

We see particles are most likely to collect along the bottom edge of the pipe,
a region of low velocity where the potential for momentum exchange is lowest,
and gravity provides a friction force. This assumption appears to be validated
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by dilute phase flow only occurring within pneumatic conveying systems at
high gas velocities (where momentum exchange close to walls is also high).

The disruption of the flow due to particulate matter causes the formation of
a boundary layer. Understanding the shape of this boundary layer (i.e., the
velocity/transport gradient) provides an understanding of how the tail end of
the slug forms. Hence, the boundary layer can be used to determine optimal
feed rates of material (to form this trailing tail edge) into the conveying
system for a given gas velocity so that slugs form quickly and consistently.

We utilised a finite-element simulation of the Navier–Stokes equations to
determine the effect of material deposition on the gas velocity. This simulation
for a tube was constructed using the fenics python module. In this simple
simulation, we considered two different situations:

1. two small particles obstructing the gas stream;

2. a thin coating of material evenly distributed over the bottom of the
pipe (represented by a rectangular region).

For simplicity, in both cases, the gas is treated as an incompressible fluid,
which is reasonable given the sole purpose of demonstrating a velocity gradient.

Figures 2 and 3 show the introduction of material into the pipe causes
the formation of a boundary layer, leading to a corresponding variation in
the transport capacity of the fluid (corresponding to changes in velocity),
responsible for the initial formation of the slug. We see from cfd-fem
simulation results for slug formation in Figure 3 by Hilton and Cleary (2011)
that the areas of high velocity within the tube appear to correspond with the
trailing edge of the slug. So the simple velocity mass transport model may
provide some insight into the problem.

The finite element simulations provide insight into the variation in gas velocity
due to material introduced into the tube. This velocity variation and the
momentum exchange condition provide advection, and this links to the dirt
pile conveyor problem by Stommel.
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Figure 2: Changes to the
velocity field along the tube
caused by the two granular
obstructions at the bottom
of the pipe (and by gran-
ular approximation rectan-
gle along the bottom of the
tube in Figure 3). Top im-
age is at t = 0, and the sub-
sequent images are at one-
second intervals.
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Figure 3: Changes to the
velocity field along the
tube caused by granular
approximation rectangle
along the bottom of the
tube (and by two granular
obstructions at the bottom
of the pipe in Figure 2).
Top image is at t = 0, and
the subsequent images are
at one-second intervals.
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Stommel’s dirtpile (Young 2016) considers the deposition of dirt into a pile
with height h(x, t), on a moving conveyor belt of length between x = 0, x = l,
modelled simply by

∂h

∂t
+ c

∂h

∂x
= s(x, t) + κ

∂2h

∂x2

for s(x, t) the dirt deposition rate and c the conveyor speed. This equation
is known to have travelling wave solutions, meeting the essential qualitative
criteria of a slug in the pneumatic conveying system.

For a sufficiently large gas velocity (for high momentum exchange), the
diffusion term for dirt in the pile, κ∂2h/∂x2, should be excluded from the
model. Incorporating the existence of the boundary layer demonstrated by
the numerical simulation, we propose that this simple model could be used
to determine slug formation and growth by changing c the conveying speed
in Stommel’s problem to be c(t, h) a function of time and height within the
tube. This function c(t, h) represents the change of advection due to the
variation in velocity within the pipe. It should be in qualitative agreement
with the boundary layer demonstrated in the finite element simulation.

So the simple model becomes

∂h

∂t
+ c(t, h)

∂h

∂x
= s(x, t)

To determine if this simple model is appropriate would require us to define an
expression for the boundary layer (velocity/transport capacity) as a function
of the soil height h and time t. This step could be completed using an
asymptotic method to determine an equation for velocity in the boundary
layer. This velocity would then determine a transport capacity c(t, h) given
a known particle mass.

This momentum exchange model may provide valuable macrosystem insight
into the optimal particle feed rate s(x, t) to optimise the time taken for slug
formation by maximising the pile size h(x, t).
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2.2 Sand Dunes

We now consider a naturally occurring mass transport system that demon-
strates similar characteristics to the slugs and the gas-particle interface of
sand dunes.

Bagnold (1941) conducted field observations and laboratory measurements in
the 1930’s to describe how wind over sand can produce ripples, ridges, and
dunes. Dunes are larger in scale and asymmetrical, with the lee face (sheltered
from the wind) being steeper and at the angle of repose (about 34◦). Sand
grains added to a face at the angle of repose form avalanches that cascade
downwards so that the angle does not steepen. Further work, since Bagnold’s
seminal studies, indicates an instability occurs when the wind blows over
a level sand surface, and that can produce sand dunes. Modelling predicts
the most unstable wavelength. A subsequent model (Kennedy 1963), based
on a result by Benjamin (1959) showed that, in a shear flow, the maximum
shear stress at the bed is shifted upstream from the maximum elevation,
thus providing an instability mechanism, transferring sand from the upwind
slope to the top of a dune. An eddy viscosity model of the airflow has been
used to study the instability (Engelund 1970; Smith 1970). The theory has
been extended to the formation of ripples (Fredsøe 1974; Richards 1980), and
continues to develop (Sumer and Bakioglu 1984; Colombini 2004; Charru and
Hinch 2006).

The instability of air flowing over sand has been developed into a model for
the nonlinear evolution of two and three-dimensional dunes by Herrmann and
colleagues (Kroy, Sauermann, and Herrmann 2002; Parteli and Herrmann
2007; Parteli et al. 2009; Schwämmle and Herrmann 2004).

In all of these models, the conservation of sand for a bed at elevation z = s(x, t)
is expressed by the Exner equation

(1− φ)
ds

dt
+
dq

dx
= 0,

where φ is the porosity of the sand bed, and q is the sediment flux, which is
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Figure 4: Toy sand dune profiles and the resulting stress. The lower set of
three curves are arbitrary simple assumed dune profiles, and the upper set
are resulting surface shear stresses τ(x)/τ0. The wind is blowing from left
to right. There is a small upwind shift of the maximum shear stress from
the apex of the profiles at x = 0. (Reproduced with permission from Kroy,
Sauermann, and Herrmann 2002, Figure 1).

generally an increasing function of shear stress τ. A popular expression for q
is q = K(τ−τc)

3/2, where τc is a critical value of shear stress for mobilisation
(Meyer-Peter and Muller 1948). The shear stress τ is derived from the
theory of Jackson and Hunt (1975). A logarithmic near-surface turbulent
velocity profile gives the shear stress (Kroy, Sauermann, and Herrmann 2002)
τ = τ0

[
1− α ′H(sx) + β

′sx
]
, where H is the Hilbert transform, and τ0 is the

stress over the unperturbed bed.

This form for the stress crucially gives a maximum stress that is just upwind
of the maximum of the dune shape, as illustrated for several particular choices
of shape by Kroy, Sauermann, and Herrmann (2002) and reproduced here in
Figure 4. The Hilbert transform, a convolution applied to the slope of the
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sand surface, is the cause of this. Having the stress at a maximum just before
the top of a dune causes the sand to move from the front of the dune to the
back of the dune and not just erode the top.

Fowler (unpublished manuscript, 2011) modifies this by analysing the boundary-
layer airflow Navier–Stokes equations, obtaining the Orr–Sommerfeld equation
for the perturbed flow, which at large Reynolds number are solved to find an
approximate shear stress

τ =
3µTu

d

(
1−

s

d
+

µ

d2/3

∫∞
0

s ′(x− ξ)

ξ1/3
dξ

)
,

where µ = 32/3R1/3/Γ2(2/3), d is a depth scale for the airflow, u = Q/d is
a velocity scale with airflow volume flux Q, µT ≈ 0.22 · 10−3ρQ is the eddy
viscosity, R = ρud/µT is a Reynolds number for the flow, and ρ is air density.

In a linear stability analysis, the uniform initial state is always unstable,
providing stress exceeds a critical value. The most unstable dimensional
wavelength is found to be

`D ≈
2πd

0.37R1/2Θ3/2
,

where Θ is the Shields stress, equalling τ0/b, where τ0 is the stress over
a flatbed, and b ≈ ∆ρgDs , and ∆ρ is the difference between the air and
grain densities, and Ds is grain diameter. A common parameterisation is
τ0 = ρK2u

2, where K2 ≈ 10−3 is dimensionless.

While the above analysis is not be valid once the dune height is high enough
to alter the airspeed, and it is well known that separation behind a step or a
high enough dune invalidates the assumptions about stress in the separation
bubble, the most unstable wavelength may be a useful estimate for slug
spacing due to its inverse relationship with slug frequency.

Substituting the values u = 10m/s, ρ = 400 kgm−3 for coffee bean density,
the density of air being one (it may be higher depending on the operating
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pressures, which are here assumed close to atmospheric pressure at room
temperature), and the height available to airflow d ≈ 0.1m, gives a flow
Reynolds number Re ≈ 5000, and a Shields parameter close to critical at
Θ ≈ 0.03, and a most unstable wavelength `D ≈ 10m, with a value less
than this at pressures above atmospheric. Conveying equipment operates
over a range of varying pressures. Two bars of pressure would lead to a most
unstable wavelength of just over one metre, for example.

3 Slug Travel and Motion

3.1 Velocity of the Slug

The previous section discusses that the conditions under which slugs form
are specific and are likely linked to various interactions within the system.
Once slugs have been formed, it is desirable to maintain and preserve them
for as long as possible during their travel inside the system. To increase this
slug lifespan, we require an understanding of how the various system qualities
influence slug travel and motion, so that slugs do not dissipate unnecessarily.

3.2 A Closed-form Solution

Here we consider the flow of granular materials in a pipeline and seek a solution
profile that admits travelling wave behaviour. This is to represent slug flow.
Analytical results obtained in this section are based on the theory of dense
granular flow down an inclined chute. However, we assume a small inclination
angle for the chute so that our problem reduces to one-dimensional flow.

To model the flow, we adopt a constitutive model describing the material
response, which is based on the theory of classical visco-plasticity. We assume
a friction law µ(I) which is a function of the inertial number I, a dimensionless
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parameter (Jop, Forterre, and Pouliquen 2006; Hill, Bhattacharya, and Wu
2021).

In this approach, the granular material is modelled as an incompressible fluid
for which the internal (Cauchy) stress tensor

σij = −pδij + τij, τij = µ(I)p
γ̇ij

|γ̇|
, i, j ∈ {1, 2, 3},

where p is the normal pressure, and τij represents the deviatoric part. The
engineering strain rate tensor γ̇ij = ∂ui/∂xj+∂uj/∂xi. The second invariant
is |γ̇| = (γ̇ijγ̇ij/2)

1/2. The inertial number I = d|γ̇|/(p/ρs)
1/2, where d is

the particle diameter, and ρs denotes the particle density. The friction law
(Jop, Forterre, and Pouliquen 2006) used is

µ(I) = µ0 +
(µ∞ − µ0)I

I+ I0
,

where µ is the coefficient of friction which is a function of I, and µ0 is the
friction for I = 0 and µ∞ is the friction when I =∞ .

From the conservation of momentum for any velocity field ~u,

ρs

(
∂~u

∂t
+ ~u · ∇~u

)
= ρs~g+∇ · ~σ. (1)

Considering one-dimensional flow, the above-mentioned quantities become

σxx = −p+ τxx, τxx = µ(I)p
γ̇xx

|γ̇|
, I = λ

∂u

∂x
,

γ̇xx =
∂u

∂x
+
∂u

∂x
= 2

∂u

∂x
, |γ̇| =

(
γ̇xxγ̇xx

2

)1/2
=
√
2
∂u

∂x
,

where λ =
√
2d/(p/ρs)

1/2. Thus,

τxx =

[
µ0 +

(µ∞ − µ0)I

I+ I0

]√
2p =

[
µ0 +

(µ∞ − µ0)λ
∂u
∂x

λ∂u
∂x

+ I0

]
√
2p.
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Here, we look for a solution that admits a travelling wave profile. As a result,
we assume that u(x, t) = F(w) where w = x − kt and k is a wave speed.
Accordingly,

∂u

∂t
=
dF

dw

∂w

∂t
= −k

dF

dw
,

∂u

∂x
=
dF

dw

∂w

∂x
=
dF

dw
.

By ignoring gravity ~g and assuming pressure p is a constant, the momentum
equation (1) becomes

ρs

(
−k

dF

dw
+ F

dF

dw

)
=
∂σxx

∂x
=
∂τxx

∂x
. (2)

Since

τxx =

[
µ0 +

(µ∞ − µ0)λ
dF
dw

λ dF
dw

+ I0

]
√
2p,

so
∂τxx

∂x
=
∂τxx

∂w

∂w

∂x
=
∂τxx

∂w

=
η

(λ dF
dw

+ I0)

d2F

dw2
−

ηλ

(λ dF
dw

+ I0)2
dF

dw

d2F

dw2

=
η

(λ dF
dw

+ I0)2
d2F

dw2

(
λ
dF

dw
+ I0 − λ

dF

dw

)
=

ηI0

(λ dF
dw

+ I0)2
d2F

dw2
,

where η =
√
2p(µ∞ − µ0)λ. Thus, differential equation (2) becomes

ρs

(
−k

dF

dw
+ F

dF

dw

)
=

ηI0

(λ dF
dw

+ I0)2
d2F

dw2
. (3)

Next, we let v = dF
dw

so

d2F

dw2
=
d

dF

(
dF

dw

)
dF

dw
= v

dv

dF
.



3 Slug Travel and Motion M22

Thus, the differential equation (3) becomes

ρs(F− k) =
ηI0

(λv+ I0)2
dv

dF
,

which is rewritten as

α(F− k) =
1

(v+ β)2
dv

dF
, where α =

λ2ρs

ηI0
, β =

I0

λ
.

Using separation of variables,∫
α(F− k)dF =

∫
1

(v+ β)2
dv

⇐⇒ α

(
F2

2
− kF

)
= −

1

v+ β
+ K,

where K is an arbitrary constant of integration. Since v = dF
dw

α

(
F2

2
− kF

)
= −

1
dF
dw

+ β
+ K.

Rearranging gives

1
dF
dw

+ β
= K− α

(
F2

2
− kF

)
= K∗ −

α

2
(F− k)2,

where the new constant K∗ = K+ αk2/2 .

Next, we let G = F− k with dG/dw = dF/dw , then

1
dG
dw

+ β
= K∗ −

α

2
G2 =

α

2

(
A2 −G2

)
,

where A2 = 2K∗/α . Thus the above equation becomes

1

A2 −G2
=
α

2

(
dG

dw
+ β

)
,
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which simplifies to

1

A2 −G2
−
αβ

2
=
α

2

dG

dw

1− αβ
2
A2 + αβ

2
G2

A2 −G2
=
α

2

dG

dw

β

(
2

αβ
−A2 +G2

)
1

A2 −G2
=
dG

dw
.

By separation of variables, we write the above differential equation as

dw =
1

β

(
A2 −G2

)
(B2 +G2)

dG, where B2 =
2

αβ
−A2. (4)

Since B2 can be either positive or negative, we consider the solution of the
differential equation (4) in the following two cases.

Case 1: B2 > 0 In this case, we solve

dw =
1

β

(A2 −G2)

(B2 +G2)
dG.

We now use a well-known substitution to allow us to integrate. LetG = B tan θ
so dG = B sec2 θdθ . Thus, B2 + G2 = B2(1 + tan2 θ) = B2 sec2 θ . Our
equation then becomes

dw =
1

Bβ

(
A2 − B2 tan2 θ

)
dθ

=
1

Bβ

(
A2 + B2 − B2 sec2 θ

)
dθ.

Since B2 = 2
αβ

−A2, we have A2 = 2
αβ

− B2. Upon substitution

dw =
1

Bβ

(
2

αβ
− B2 sec2 θ

)
dθ
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=
2

αβ2B
dθ−

B

β
sec2 θdθ.

Integrating on both sides gives

w =
2

αβ2B
θ−

B

β
tan θ+ C,

where C is an arbitrary constant. Recalling that θ = arctan G
B
, G = F(w)−k

and w = x− kt . Thus, the solution to the first case is

x− kt =
2

αβ2B
arctan

{
F(x− kt) − k

B

}
−

(F(x− kt) − k)

β
+ C.

Case 2: B2 < 0 Letting B2 = −D2, equation (4) becomes

dw =
1

β

(A2 −G2)

(−D2 +G2)
dG.

Next, we introduce G = D tanh θ so dG = D sech2 θdθ . Thus, G2 −D2 =
−D2(1− tanh2 θ) = −D2 sech2 θ . Our equation then becomes

dw = −
1

Dβ

(
A2 −D2 tanh2 θ

)
dθ

= −
1

Dβ

(
A2 −D2 +D2 sech2 θ

)
dθ.

Since −D2 = 2
αβ

−A2 we have A2 = 2
αβ

+D2. Upon substitution,

dw = −
1

Dβ

(
2

αβ
+D2 sech2 θ

)
dθ

= −
2

αβ2D
dθ−

D

β
sech2 θdθ.

Integrating on both sides gives

w = −
2

αβ2D
θ−

D

β
tanh θ+ C,
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where C is an arbitrary constant. Recalling that θ = arctanh G
D
, G = F(w)−k

and w = x− kt , the solution to the second case is

x− kt = −
2

αβ2D
arctanh

{
F(x− kt) − k

D

}
−

(F(x− kt) − k)

β
+ C.

3.3 Permeating flow rate

While pneumatic conveying is a complex system with multi-phase flow, it
is possible to analyse the case of steady-state single slug systems and their
individual phases. This section considers multiple approaches to the problem,
and existing results based on analysis of the individual phases show that
the relationship between mass flow rates of gases into and out of the air
pocket behind a slug can be derived using a conservation of mass equation
for an ideal gas. This simplified system reveals two crucial features of the
single slug system.

1. There is a solution for what input mass flow rate is required to maintain
a constant gas pressure/density as a slug propagates down a pipe.

2. The air mass flow rate permeating a slug is, by definition, also the air
mass flow rate entering the next downstream slug, and so on.

Knowledge of these two features helps optimise the gas flow rate at the input
of the system and examine the stability of multiple slugs.

Considering only the solid phase, the relationship between slug and particle
velocities has been derived (Orozovic et al. 2021):

vs = E (vp + c) , (5)

where vs is the slug velocity, vp is the particle velocity, E is the slug to
bulk density ratio, which reflects the partially aerated structure of slugs, and
c is a propagation velocity of the particle exchange between a slug and a
stationary layer.
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Equation (5) just reflects that the slug wave (vs) travels faster than the
particles within the wave (vp), and this is due to the particle exchanges
between a slug and its stationary layers, which occur at the propagation
velocity c. Using conservation of mass over a slug for the solids phase, a
steady slug obeys the relationship (Orozovic et al. 2019)

vsα = Ec, (6)

where α is the layer fraction defined as the stationary layer cross-sectional
area divided by the pipe cross-sectional area.

Combining equations (5) and (6), the following relation is obtained for steady
length slugs between particle velocity vp, slug velocity vs and layer fraction α:

Evp = vs(1− α). (7)

Equation (7), which is obtained by considering only the solid phase, is utilised
to relate to an expression obtained by considering only the gas phase. For
the gas phase, we may examine a horizontal pipe and an air pocket behind a
slug. Using the ideal gas law, for such a system the following equation must
be satisfied:

V
dP
dt

+ P
dV
dt

= RT
dm
dt

(8)

where P is the gas pressure, V is the volume of gas, R is the gas constant, T is
gas temperature, and t is time.

Considering the case of steady pressure in the air pocket, the first term on
the left-hand side may be neglected, and the rate of change of the volume is
just the product vs(1− α)A , which from equation (7) also equals EvpA.

dV
dt

= vs(1− α)A = EvpA. (9)

So, for steady pressure, substituting (9) into (8), obtains an expression for the
rate of change of mass in the air pocket, which is also equal to the difference
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in the air mass flow rates entering and leaving the air pocket:

dm

dt
=
P

RT
vpA = ṁin − ṁout, (10)

where m is the mass of air in the air pocket, ṁin is the mass flow rate of gas
entering the air pocket and ṁout is the permeating flow rate which is leaving
the air pocket and entering the slug.

Equation (10) shows at what rate the mass in the air pocket must increase to
maintain a constant gas pressure/density during slug motion, and this has
found applications (Tan et al. 2008; Orozovic et al. 2020, e.g.). The higher the
particle velocity and pressure, the less air permeates a slug. This is especially
relevant when examining multiple slug systems, where the permeation flow
rate out of one slug is the input flow rate into the next. Furthermore, (10)
captures the inverse relationship between particle velocity and pressure noted
in the experiments of Lavrinec et al. (2019).

Different applications of equation (10) are of interest in several areas of slug
flow, ranging from an expression relating gas pressure and particle velocity, as
well as the degree of aeration stemming from the permeating flow rate ṁout.
Recent work (Lavrinec et al. 2021) that considered numerical simulations and
theoretical analysis of single slugs with a steady layer fraction ahead showed
that in such cases, there exists a steady slug length. The most interesting
potential application of (10) is in expanding (Lavrinec et al. 2021) to the
open problem of whether multiple slugs can be individually stable, due to (10)
relating the permeating and incoming air mass flow rates for each slug. An
application of (10) has recently been considered by Orozovic et al. (2022)
who showed that to satisfy gas conservation of mass, multiple slugs of the
same steady velocity are not possible, and multiple slugs of different steady
velocities are highly unlikely.

During the misg, the Ergun equation, an extension of Darcy’s law for the
conservation of momentum in porous media, was considered as a possible
additional relation between pressure difference and fluid velocity. However, we
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found that the porosity values required for application were well beyond what
occurs in slug flow, which was also the conclusion of Lecreps et al. (2014b).

4 Conclusions and Future Work

4.1 Future Work

Due to the complexity of this problem, the misg provided a preliminary
discussion of many important facets of pneumatic conveying systems and an
opportunity to develop a relevant and valuable problem overview. However,
many of the avenues uncovered will require more time to complete an appro-
priate analysis. This in-depth analysis can determine the value of the theory
for use in pneumatic conveying system design.

We now collect some questions and directions for future research that were
uncovered during the Study Group and which are related to work described
in the previous sections.

Key Questions

1. When do some of the fluid-based model assumptions required for Navier–
Stokes, linear wave theory, etc., break down? What scale systems are
our results appropriate for?

2. What is the impact of a varying bed depth on the slug? What happens
if the feed rate at the leading edge of the slug is suddenly increased?

3. How fast are the forward-wake particles, and how do they compare in
speed to the slug? Does this place limitations on efficiency improvement
related to the material size?

4. In the body of the slug, the particles seem to be moving en masse, with
very little relative motion to one another. Horizontally, the slug as a
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whole is pushed forward by the air flowing through the slug, and by
the pressure difference across the slug. Opposing these, there is a drag
at the pipe walls and on the layer of particles remaining on the pipe
base. Vertically there is a downwards force due to gravity balanced by
the reaction at the lower pipe surface. Individual particles within the
slug are acted upon by interaction with one another, the pressure due
to the air flow, and the force of gravity. To what extent is the variable
pressure inside the slug responsible for its fluid-like behaviour?

5. In the front of the slug a wedge of particles advances. The bottom of the
wedge is formed by the interaction with the bed of stationary particles
in front of the slug. In a thin layer between these two regions, particles
change speed from being at rest to moving with the slug velocity as
they get entrained at the upper surface of the wedge borders with the
air above the stationary bed. The slope downwards may be purely due
to the necessity of a slope to maintain the ‘heap’ of the slug. An extra
feature here is particles at the front of the wedge accelerating to faster
speeds than the speed of particles within the main slug body. This
acceleration must be caused by the air pressing through the slug: there
are no particles in front to resist this pressure. It is not clear what
happens to these accelerated particles. Are they thrown off the front
of the slug onto the stationary bed in front to be later re-entrained?
Videos suggest so. Or do they get reabsorbed by the slug’s forward
motion before reaching the bed in front? The slug moves faster than
the bodies in its main body. How fast are these forward-wake particles,
and how do they compare in speed to the slug itself?

6. At the slug’s tail, particles appear to fall out of the slug due to gravity
and the lack of particles behind to keep them in place. The back of
the slug seems to be collapsing. There appears, in general, to be a
gradual slope from the top of the slug down onto the stationary bed
of particles behind. Simulations suggest that the particles do not slow
down uniformly. Instead, the particles at the bottom of the slug are
slowed down faster. This would be expected as they are nearer the
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pipe base and are slowed by frictional drag. The particles at the top
initially have no such drag. The slowing of particles at the bottom of
the tail removes them from below the upper particles, and so these
latter particles fall under gravity into the space created. Eventually,
these initially high particles are low enough to be affected by friction on
the bottom of the pipe, and they all come to rest. Does the slug have
greater friction where it contacts the bed than on the sides of the pipe?

7. Is there a circumstance where multiple slugs are theoretically stable
within the system? The work in Section 3.3 is an attempt at considering
how the formation of new slugs influences the gas flow. Section 3.3
notes this approach was recently applied by Orozovic et al. (2022) to
demonstrate that the stability of individual slugs in a system of multiple
slugs was doubtful.

Concerning the results within this study and of general importance, the
first question helps understand the limitations of the theory and models
developed in Sections 2 and 3, that is, a material size/density or velocity/
pressure threshold where the fluid-based models no longer provide insight.
Questions two, three and four are vital for optimising the mass transport
system’s efficiency and understanding a slug’s behaviour in motion Section 3.
Answers to questions five and six would be required to reduce pipeline wear
and determine optimal slug speeds (and corresponding pressures/system
design), which are consequences of all modelling within this work. The recent
resolution of question seven using approaches discussed during the misg
highlights the impact of the study group beyond just the designated week.

4.2 Conclusions

The problem of pneumatic conveying provided an interdisciplinary challenge
where various approaches from different branches of mathematics could be
utilised. Due to the complexity of the formation of slugs and their motion,
many different key areas for investigation were identified in this preliminary
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investigation. Through a careful collaborative effort, directions for future
work have been established, and members of the misg2021 are optimistic
that this future work will provide a more comprehensive understanding of
the interrelation of the components of pneumatic conveying systems. The
members of misg2021 are hopeful that this understanding can be utilised to
optimise the design and more efficiently build high-performance pneumatic
conveying systems.
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