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On some overdetermined free boundary
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Abstract

This article deals with some free boundary problems for the Lapla-
cian operator. We first give sufficient conditions of existence of free
boundaries. Then combining the maximum principle to the mono-
tonicity of the mean curvature, we prove a symmetry result in the
case where the source term is constant. The method presented in this
work is new and all the results obtained here can be extended to more
general divergence operators. The technique used to prove the sym-
metry result can be applied for other symmetric overdetermined value
problems.
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1 Introduction

Let D be an open and bounded subset of RN (N ≥ 2) which contains all the
domains we use in this article. Let c > 0 be a parameter and denote by f a
positive function. We look for an open set Ω ⊂ D such that the following
overdetermined free boundary problem has a solution.

F (c, f)


−∆uΩ = f in Ω, uΩ = 0 on ∂Ω

}
P (Ω, f) ,

−∆vΩ = uΩ in Ω, vΩ = 0 on ∂Ω
}
P (Ω,uΩ) ,

∂uΩ
∂ν
× ∂vΩ

∂ν
= c on ∂Ω (overdetermined condition).

Here ν is the outward normal vector to ∂Ω. Notice that since uΩ = 0 = vΩ
on ∂Ω then

|∇uΩ| = −
∂uΩ

∂ν
and |∇vΩ| = −

∂vΩ

∂ν
.

Therefore the overdetermined condition becomes

|∇uΩ||∇vΩ| = c on ∂Ω .
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In general without any assumptions on data, the problem F (c, f) has no
solution.

Section 2 contains some preliminary results. In Section 3, we study the
problem F (c, f) when f is a positive function belonging to L2(D) and having
a compact support with nonempty interior: the solution we look for must
strictly contains the convex hull of the support of f, say C. Our approach
here consists of solving the shape optimization problem associated to F (c, f).
The boundary of the minimum Ω we obtain can touch ∂C. So, the shape
derivative allows us to get the overdetermined condition only on ∂Ω \ C .
Our goal in this section is to give sufficient conditions in order to have C
strictly contained in Ω and |∇uΩ||∇vΩ| = c on ∂Ω, see Theorems 18 and 20.
For Theorem 18 we apply the maximum principle, whereas for Theorem 20
we use the monotonicity of the mean curvature for the domains which are
of class C2. Section 4 concerns the case where f ≡ 1 . This section proves
that any solution of F (c, 1) must be a ball. To get this symmetry result, we
combine the maximum principle to the monotonicity of the mean curvature.
Recall that when f ≡ 2 , the problem F (c, f) arises from a variational problem
in Probability [11]. Kinateder and McDonald [11] used the first exit time for
Brownian motion from a smoothly bounded domains in Euclidian space and
defined two natural functionals on the space of embedded, compact, oriented,
unparametrized hypersurfaces in Euclidian space. They developed explicit
formulas for the first variation of the functionals and characterized the critical
points as balls. Huang and Miller [10] established the variational formulas for
maximizing the functionals (they considered) over Ck domains with a volume
constraint and obtained the same symmetry result for their maximizers. We
present a new method to derive this symmetry result. We can also extend
it to the p-Laplacian case (see Remark 26 at the end of Section 4). The last
section concludes.
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2 Preliminaries

Definition 1 Let K1 and K2 be two compact subsets of D. We call a Haus-
dorff distance of K1 and K2 (or briefly dH(K1, K2)) the following positive
number:

dH(K1, K2) = max [ρ(K1, K2), ρ(K2, K1)] ,

where ρ(Ki, Kj) = maxx∈Kid(x, Kj), i, j = 1, 2 , and d(x, Kj) = miny∈Kj |x− y| .

Definition 2 Let ωn be a sequence of open subsets of D and ω be an open
subset of D. Let Kn and K be their complements in D̄. We say that the

sequence ωn converges in the Hausdorff sense, to ω (or briefly ωn
H

−→ ω)

if
lim
n→+∞dH(Kn, K) = 0 .

Definition 3 Let ωn be a sequence of open subsets of D and ω be an open
subset of D. We say that the sequence ωn converges in the compact sense

to ω (or briefly ωn
K

−→ ω) if

• every compact subset of ω is included in ωn, for n large enough, and

• every compact subset of ω̄c is included in ω̄cn, for n large enough.

Definition 4 Let ωn be a sequence of open subsets of D and ω be an open
subset of D. We say that the sequence ωn converges in the sense of char-

acteristic functions, to ω (or briefly ωn
L

−→ ω) if χωn converges to χω in
L
p
loc(RN), p 6=∞ , (χω is the characteristic function of ω).

Lemma 5 [5, 15] If ωn is a sequence of open subsets of D then
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1. there exists a subsequence (still denoted by ωn) which converges, in the
Hausdorff sense, to some open subset of D,

2. |∂Ω| ≤ lim infn→+∞|∂Ωn| .

Definition 6 [3] Let C be a compact convex set and let int(C) be its interior.
The bounded domain ω satisfies C-gnp if

1. ω ⊃ int(C),

2. ∂ω \ C is locally Lipschitz,

3. for any c ∈ ∂C there is an outward normal ray ∆c such that ∆c ∩ω is
connected, and

4. for every x ∈ ∂ω \ C the inward normal ray to ω (if exists) meets C.

Put
OC = {ω ⊂ D : ω satisfies C-gnp} .

Theorem 7 If ωn ∈ OC , then there exists an open subset ω ⊂ D and a

subsequence (again denoted by ωn) such that (i) ωn
H

−→ ω , (ii) ωn
K

−→ ω ,
(iii) χωn converges to χω in L1(D) and (iv) ω ∈ OC . Furthermore, the
assertions (i), (ii) and (iii) are equivalent.

Barkatou proved this theorem [3, Theorem 3.1] and the equivalence be-
tween (i), (ii) and (iii) [3, Propositions 3.4, 3.5, 3.6, 3.7 and 3.8]. Notice that,
in general, we do not have the equivalence between (i), (ii) and (iii) [9].

Proposition 8 Let {ωn,ω} ⊂ OC such that ωn
H

−→ ω . Let un and uω
be respectively the solutions of P(ωn, f) and P(ω, f) . Then un converges
strongly in H10(D) to uω (un and uω are extended by zero in D).
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This proposition was proven for N = 2 or 3 [3, Theorem 4.3].

Proposition 9 [4, Theorem 3.5] Let vn and vω be respectively the solutions
of P(ωn, gn) and P(ω,g). If gn converges strongly in H−1(D) to g then
vn converges strongly in H10(D) to vω (vn and vω are extended by zero in D).

Definition 10 Let C be a convex set. We say that an open subset ω has the
C-sp, if

1. ω ⊃ int(C) ,

2. ∂ω \ C is locally Lipschitz,

3. for any c ∈ ∂C there is an outward normal ray ∆c such that ∆c ∩ω is
connected, and

4. for all x ∈ ∂ω\C Kx∩ω = ∅ , where Kx is the closed cone defined by{
y ∈ RN : (y− x).(z− x) ≤ 0 , for all z ∈ C

}
.

Remark 11 Kx is the normal cone to the convex hull of C and {x}.

Proposition 12 [3, Proposition 2.3] ω has the C-gnp if and only if ω sat-
isfies the C-sp.

Theorem 13 [2, Theorem 1.4] Let L be a compact subset of RN . Let fn be
a sequence a functions defined on L. We assume that the fn are of class C3

and ∣∣∣∣∂fn∂xi
∣∣∣∣ ≤M,

∣∣∣∣ ∂2fn∂xi∂xj

∣∣∣∣ ≤M,

∣∣∣∣ ∂3fn

∂xi∂xj∂xk

∣∣∣∣ ≤M,

where M is a strictly positive constant and is independent of n.
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Define a sequence Ωn, by Ωn = {x ∈ L : fn (x) > 0} and suppose there
exists α > 0 such that |fn (x)| + |∇fn (x)| ≥ α for all x in L. If the Ωn have
the C-gnp, then there exists Ω of class C2 and a subsequence (still denoted
by Ωn) such that Ωn converges in the compact sense to Ω.

Remark 14 The aim of Theorem 13 is to give the C2 regularity of the
minimum Ω (respectively Ω∗) of J (respectively j) defined below. This is
in order to use the shape derivative and so to resolve Problem F (c, f). The
proof of this theorem uses the following lemma

Lemma 15 Let L be a compact subset of RN. Let fn be a sequence of func-
tions defined as Theorem 13. Suppose that Ω is an open subset of L such
that

Ω = {x ∈ L : h(x) > 0} and ∂Ω = {x ∈ L : h(x) = 0} ,

where h is a continuous function defined in L . If fn converges uniformly to h
in L, then the Ωn converge in the compact sense, to Ω.

3 Problem F(c,f)

In this section, N ∈ {2, 3}. If ω is an open subset of D, let |∂ω| (respec-
tively |ω|) be the perimeter (respectively the volume) of ω and H∂ω be the
mean curvature of ∂ω .

3.1 Shape optimization problems

Consider the following shape optimization problem (OP).

Find Ω ∈ OC such that J(Ω) = min
ω∈OC

J(ω) ,
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where

J(ω) = c|ω| −
1

2

∫
ω

u2ω dx ,

with |ω| the volume of ω and uω (respectively vω) the solution of P(ω, f)
(respectively P(ω,uω)). Notice that by Green’s formula,

J(ω) = c|ω| −
1

2

∫
ω

fvω dx .

3.1.1 Existence of the minima

Theorem 16 There exists Ω ∈ OC which is of class C2 and minimizes the
functional J on OC. Furthermore, uΩ (respectively vΩ) is the solution of
P(Ω, f) (respectively P(Ω,uΩ)).

Proof: Let uD be the solution of the Dirichlet problem P(D, f), by the
Maximum Principle, 0 ≤ uω ≤ uD so

J(ω) = c|ω| −
1

2

∫
ω

u2ω dx ≥ −
1

2

∫
D

u2D ,

and inf J exists. Let Ωn be a minimizing sequence in OC . We choose Ωn

as in Theorem 13 above and get the existence of a subsequence Ωnk and

of Ω which is of class C2 such that Ωnk
K

−→ Ω. Then, from Theorem 7, (i)

implies Ωnk
H

−→ Ω , (iv) gives Ω ∈ OC and by (iii) |Ωnk | converges to |Ω|.
The convergence of

∫
D
u2nkχΩnk to

∫
D
u2ΩχΩ is given by (iii) of Theorem 7

together with Proposition 8. We then conclude that J(Ω) = minω∈OCJ(ω) .
Now, on one hand Proposition 8 implies that uΩ is solution of P(Ω, f). On
the other hand, Proposition 8 together with Proposition 9 implies that vΩ is
the solution of P(Ω,uΩ). ♠
Put

OΩ = {ω ⊂ Ω : ω satisfies C-gnp} .
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Consider

j(ω) = c|∂ω| +

∫
∂ω

∂uω

∂ν
dx ,

where uω the solution of the Dirichlet problem P(ω ,f). By Green’s formula,

j(ω) = c|∂ω| −

∫
ω

f(x)dx.

Theorem 17 There existsΩ∗ ∈ OΩ which minimizes the functional j on OΩ .
Ω∗ is of class C2 .

Proof: Since f is positive, then for all ω ⊂ D ,

j(ω) ≥ −

∫
D

f(x)dx .

So inf j exists. As in the proof of Theorem 16 above, there exists a sub-

sequence Ω∗nk and Ω∗ which is of class C2 such that Ω∗nk
H

−→ Ω . Now,
from Theorem 7, (iv) gives Ω∗ ∈ OC and by (iii)

∫
Ω∗
nk

f(x)dx converges to∫
Ω∗ f(x)dx . Then item 2 of Lemma 5 permits to get j(Ω∗) = minω∈OCj(ω) .

♠

3.1.2 The optimality conditions

In this subsection, we use the standard tool of the domain derivative to write
down the optimality condition. Before doing this, recall the definition of
the domain derivative [17, 14]. Suppose that Ω is of class C2. Consider
a deformation field V ∈ C2

(
RN; RN

)
and set Ωt = {x+ tV(x) : x ∈ Ω},

t > 0 . The application Id+ tV (a perturbation of the identity) is a Lipschitz
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diffeomorphism for t small enough and by definition, the derivative of J at Ω
in the direction V is

dJ(Ω,V) = lim
t→0

J(Ωt) − J(Ω)

t
.

As the functional J depends on the domain Ω through the solution of the
Dirichlet problem P(Ω, f), we need to define also the domain derivative u′Ω
of uΩ:

u′Ω = lim
t→0

uΩt − uΩ

t
.

Furthermore, u ′Ω is the solution of the following problem [17, 14]:{
−∆u ′Ω = 0 in Ω,

u ′Ω = −∂uΩ
∂ν
V · ν on ∂Ω ,

(1)

Now to compute the the shape derivatives of J and j, recall the following [9].

1. The shape derivatives of the volume and the perimeter are respectively∫
∂Ω

V · νdσ and

∫
∂Ω

NH∂ΩV · νdσ .

2. Since uΩ ∈ H10(D) and Ω is of class C2, if we put

F(Ω) =

∫
Ω

u2Ω dx ,

then the Hadamard formula gives

dF(Ω,V) = 2

∫
Ω

uΩu
′
Ω dx .

But vΩ is solution to Dirichlet problem P(Ω,uΩ), so by Green’s formula

dF(Ω,V) = 2

∫
∂Ω

|∇uΩ||∇vΩ|V · νdσ .
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Now since J(ω) = c|ω| − 1
2
F(ω) then

dJ(Ω,V) =

∫
∂Ω

(c− |∇uΩ||∇vΩ|)V · νdσ . (2)

Ω being the minimum of the functional J, dJ(Ω,V) ≥ 0 for every admissible
direction V . Therefore∫

∂Ω

(c− |∇uΩ||∇vΩ|)V · νdσ ≥ 0 for every admissible direction V.

We mean by admissible direction the one which allows us to keep the C-gnp
or the C-sp (according to Proposition 12). SinceΩ has the C-gnp, it satisfies
the C-sp. Then

for all x ∈ ∂Ω \ C , Kx ∩Ω = ∅ .

For t sufficiently small, let Ωt = Ω+ tV (Ω) be the deformation of Ω in the
direction V . Let xt ∈ ∂Ωt . There exists x ∈ ∂Ω such that xt = x + tV(x) .
Using the definition of Kxt and the equality above, we get (for t small enough
and for every displacement V)

for all xt ∈ ∂Ωt \ C , Kxt ∩Ωt = ∅ ,

which means that Ωt satisfies the C-sp (and so the C-gnp) for every direc-
tion V when t is sufficiently small. Then, using V and −V , and that the set
of the functions V · ν is dense in L2(∂Ω) , we deduce

|∇uΩ||∇vΩ| = c on ∂Ω \ ∂C . (3)

On the other hand, the admissible directions V on ∂Ω ∩ ∂C must satisfy

V(x) · ν(x) ≥ 0 ,

and one gets
|∇uΩ||∇vΩ| ≤ c on ∂Ω ∩ ∂C . (4)
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Now, thanks to Hadamard formula, the shape derivative of j at Ω∗ is

dj(Ω∗, V) =

∫
∂Ω∗

(NcH∂Ω∗ − f)V · νdσ ≥ 0 ,

for every admissible direction V .

Arguing as above and observing that the deformation domain Ω∗t is in Ω
if the directions V on ∂Ω∗ ∩ ∂Ω satisfy V(x) · ν(x) ≤ 0 , we get

H∂Ω∗ = 0 on ∂Ω∗ \ (∂C ∪ ∂Ω),

H∂Ω∗ ≤ 0 on ∂Ω∗ ∩ ∂Ω, and

H∂Ω∗ ≥ f
Nc

on ∂Ω∗ ∩ ∂C.
(5)

3.1.3 Main theorems

Theorem 18 Let Ω be as in Theorems 16 and C be of class C2. Let uC
(respectively vC) be the solution of P(int(C),f) (respectively P(int(C),uC)).
Suppose that both uC and vC are in C2(C) and

|∇uC||∇vC| > c on ∂C. (6)

Then Ω is a solution of F (c, f) which strictly contains C.

Proof: ∂Ω 6= ∂C , otherwise Ω = int(C) , uΩ = uC and vΩ = vC . But the
optimality conditions (3) and (4) give

|∇uC| |∇vC| = |∇uΩ| |∇vΩ| ≤ c on ∂C ,

which contradicts (6).

Now, suppose that ∂Ω ∩ ∂C 6= ∅ . Since uΩ and uC are in C2(C) ,

∆uΩ = −f = ∆uC in int(C) and uΩ ≥ 0 = uC on ∂C,
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the maximum principle implies that

uΩ ≥ uC in int(C).

But uΩ 6= uC in int(C) , then

uΩ > uC in int(C).

Now, since uΩ = uC on ∂Ω ∩ ∂C, then by the maximum principle we get

∂uΩ

∂ν
<
∂uC

∂ν
on ∂Ω ∩ ∂C ,

or again, since |∇uΩ| = −∂uΩ
∂ν

,

|∇uC| < |∇uΩ| on ∂Ω ∩ ∂C .

Now by the maximum principle, uΩ ≥ 0 on Ω̄. Then replacing f by uΩ, uΩ
by vΩ and uC by vC, and arguing as above, we obtain

|∇vC| < |∇vΩ| on ∂Ω ∩ ∂C .

But (6) together with (4) implies

c < |∇uC| |∇vC| < |∇uΩ| |∇vΩ| ≤ c on ∂C ∩ ∂Ω .

which is absurd. It then follows that C is strictly contained in Ω and so

|∇uΩ| |∇vΩ| = c on ∂Ω .

♠

Theorem 19 Let Ω and Ω∗ be as in Theorems 16 and 17. Suppose

|∇uΩ∗ ||∇vΩ∗ | > c on ∂Ω∗. (7)

Then Ω is a solution of F (c, f) which strictly contains Ω∗.
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Replacing Ω by Ω∗, the proof is the same as above.

Theorem 20 Let Ω and Ω∗ be as in Theorems 16 and 17. Suppose that
C is of class C2 and

H∂C <
f

Nc
on ∂C. (8)

Then

1. C is strictly contained in Ω∗,

2. Ω is a solution of F (c, f) which contains Ω∗.

Proof:

1. Suppose by contradiction that ∂Ω∗∩∂C 6= ∅ . Since int(C) ⊂ Ω∗ and C
and Ω∗ are of class C2, then by using the monotonicity of the mean
curvature together with (5) and (8) we have on ∂Ω∗ ∩ ∂C

f

Nc
≤ H∂Ω∗ ≤ H∂C <

f

Nc
,

which gives a contradiction.

2. C is strictly contained inΩ∗ which is contained inΩ (by definition). So
C is strictly contained in Ω and (3) gives the overdetermined condition
on ∂Ω.

♠
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4 A symmetry result

In this section, we suppose that f ≡ 1 and N ≥ 2 .

Definition 21 [6] We say that a domain ω satisfies the ε-cone property if
for all x ∈ ∂ω there exist a direction vector ξ ∈ RN such that the cone
C(y, ξ, ε) ⊂ ω for all y ∈ B(x, ε)∩ ω̄ . ε denotes both angle and hight of the
cone.

Denoting by Oε the class of domains which have the ε-cone property, we have
this lemma.

Lemma 22 [6] If ωn ∈ Oε , then there exists an open subset ω ⊂ D and a

subsequence (again denoted by ωn) such that (i) ωn
H

−→ ω , (ii) ω̄n
H

−→ ω̄ ,

(iii) ∂ωn
H

−→ ∂ω , (iv) χωn converges to χω in L1(D) and (v) ω ∈ Oε ,
(vi) vωn converges strongly in H10(D) to vω (vωn and vω are respectively the
solution of P(ωn, 1) and P(ω, 1)).

Let Ω be a solution of the problem F (c, 1) and put

O1 = {ω ⊃ Ω : ω ∈ Oε}.

Consider

J1(ω) = c2|∂ω| −
1

2

∫
ω

u2ω ,

where uω is the solution of the Dirichlet problem P(ω, 1).

Before stating the main theorem of this section, let us state the two follow-
ing propositions. The proofs are analogous to those of Theorems 16 and 17.
They use Lemma 22 together with the lower semicontinuity of the perimeter
and the continuity of the volume (for the Hausdorff topology). To obtain
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the optimality conditions, we use the shape derivative as in Subsection 3.1.2.
Using the same notations, to get Ω in (Ω1)t (for t small enough) we must
choose a deformation directions V such that V · ν ≥ 0 on ∂Ω ∩ ∂Ω1. In the
same way V · ν ≤ 0 on ∂Ω ∩ ∂Ω2 allows us to have (Ω2)t in Ω (Ω1 and Ω2

are given by Propositions 23 and 24).

Proposition 23 There exists Ω1 ∈ O1 which minimizes J1 on O1. If Ω1 is
of class C2, then

1. |∇uΩ1 ||∇vΩ1 | ≤ Nc2H∂Ω1 on ∂Ω1 ∩ ∂Ω ,

2. |∇uΩ1 ||∇vΩ1 | = Nc2H∂Ω1 on ∂Ω1 \ ∂Ω .

Consider
O2 = {ω ⊂ Ω : ∂ω ∩ ∂Ω1 6= ∅ and ω ∈ Oε},

and
J2(ω) = c|∂ω| − |ω| .

Proposition 24 There exists Ω2 ∈ O2 which minimizes J2 on O2. If Ω2 is
of class C2, then

1. H∂Ω2 ≤ 1
Nc

on ∂Ω ∩ ∂Ω2 ,

2. H∂Ω2 = 1
Nc

on ∂Ω2 \ ∂Ω .

In the sequel, we state and prove the main theorem of this section.

Theorem 25 If Ω is a solution of F (c, 1), then Ω is a ball of radius Nc.

As we see in the following proof, to reach the conclusion of the theorem, we
show that Ω = Ω1 .
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Proof: Since Ω ⊂ Ω1 , it is sufficient to show that ∂Ω = ∂Ω1 . By
Lemma 22 and the definition of O2, ∂Ω2∩∂Ω1 6= ∅ . So since Ω2 ⊂ Ω ⊂ Ω1

then
∂Ω2 ∩ ∂Ω ∩ ∂Ω1 6= ∅ .

This together with the monotonicity of the mean curvature and the fact
that Ω, Ω1 and Ω2 are of class C2, implies that for all x ∈ ∂Ω2∩∂Ω∩∂Ω1 ,

H∂Ω1(x) ≤ H∂Ω(x) ≤ H∂Ω2(x) ≤
1

Nc
. (9)

Hence, Propositions 23 and 24 imply

|∇uΩ1(x)||∇vΩ1(x)| ≤ Nc2H∂Ω2(x) ≤ c .

Suppose that ∂Ω 6= ∂Ω1 , by the maximum principle we obtain

c = |∇uΩ(x)||∇vΩ(x)| < |∇uΩ1(x)||∇vΩ1(x)| ≤ c ,

which is a contradiction. It then follows that Ω = Ω1 and so

c = |∇uΩ||∇vΩ| = Nc2H∂Ω on ∂Ω.

This implies that

H∂Ω =
1

Nc
,

which means that Ω is a ball of radius Nc thanks to Alexandrov’s result [1].
In this case, (9) implies Ω2 = Ω . ♠

Remark 26 Combining the Hopf’s comparison principle [18] with the mono-
tonicity of the mean curvature, one can extend the result of Theorem 25 to
the case of the p-Laplace operator.
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5 Concluding remarks

Remark 27 Recall that the C-gnp is satisfied by the solution of the so-
called Quadrature Surface Free Boundary Problem [16, 8]. The domain which
satisfies the C-gnp may be non-Lipschitz, it may contain cusps [3]. As a
consequence, OC cannot be contained in Oε.

Remark 28 The hypothesis in Theorem 13 about the local regularity is
not too restrictive because of, for instance, results due to DiBenditto [7],
Lewis [12] and Lieberman [13].

Remark 29 For the p-Laplacian, the continuity with respect to the domain
is a consequence of the γp-convergence [4]. So using Hopf’s comparison
principle and replacing the condition (6) by

|∇uC||∇vC| > c on C.

one can extend Theorems 18 and 19 to the p-Laplacian case.

Remark 30 Theorem 20 can be extended to other divergence operators like
div(a(x,Du)). For this kind of operators the continuity with respect to the
domain is a simple consequence of Mosco convergence [4].

Remark 31 Consider the following free boundary problem. We look for
a domain Ω and a couple of functions (uΩ; vΩ) such that uΩ is solution
of P(Ω, f), vΩ is solution to P(Ω,uΩ) and

|∇uΩ||∇vΩ| = σH∂Ω + c on ∂Ω .

By considering the functional of domain

Jσ(ω) =
σ

N
|∂ω| + c|ω| −

1

2

∫
ω

u2ω dx ,
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we use the same arguments as in Theorem 16 and prove the existence of a
minimum Ω for Jσ on OC which is of class C2. Then performing the shape
derivative we obtain the following optimality conditions

|∇uΩ||∇vΩ| = σH∂C + c on ∂Ω \ ∂C ,

|∇uΩ||∇vΩ| ≤ σH∂C + c on ∂Ω ∩ ∂C .

Next, replacing in the inequality (6) of Theorem 18, c by σH∂C + c we
obtain the same conclusion by combining the maximum principle with the
monotonicity of the mean curvature. Now, according to Remark 30 we can
extend this result to the p-Laplacian case.
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