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Biological self-heating in industrial compost
piles: an informal discussion of students

applying prior mathematical skills within an
industrial case study
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Abstract

We consider a simple ‘toy model’ for the spontaneous combustion
of industrial compost stockpiles. The model is a scalar non-linear
differential equation which can be analysed using techniques taught in
an introductory subject on non-linear ordinary differential equations.
This model was used as a case study in a third year subject. We discuss
how students approached some of the questions. Could they transfer
their prior knowledge about differential equations to an industrial case
study? How would they cope with a problem which required both
pen-and-paper and numerical calculations? Students used a variety
of approaches but the worked solutions only showed one. It would be
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beneficial for students to see that there is not one correct method to
solve such problems.

Contents
1 Introduction C209

2 The model C211

3 Heat release rate C211

4 Steady-state diagram: S-shaped behaviour C213

5 Steady-state diagram: unique solution C219

6 Conclusions C220

1 Introduction
In New South Wales, organic waste material, both ‘garden organics’ and ‘food
organics’, from households is placed in green bins. Through stockpiling Food
Organics and Garden Organics (fogo) is made into a quality compost, an
example of environmental recycling. Given the chemical processes underlying
fogo composting and the size of the stockpiles held at many council and
commercial facilities, it is perhaps unsurprising that spontaneous combustion
of fogo piles has been reported in NSW councils. More generally, the
spontaneous combustion of compost piles has been reported throughout
Australia and beyond.

In Spring session 2021, one of the authors taught the subject MATH313 (Case
Studies in Applied Mathematics). This contains a module on spontaneous
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combustion which investigates the Semenov model

dθ
dt∗

= ψ exp(θ) − θ , (1)

where θ is a scaled temperature, proportional to the difference between
the temperature of the stockpile and ambient temperature, t∗ is a scaled
time, and ψ is a control parameter. Students are taught how to analyse
equation (1) using standard techniques. The model assumes that there are
two mechanisms for heat transfer. Firstly, heat is generated by an exothermic
chemical reaction. Secondly, heat is lost from the stockpile to the surrounding
atmosphere through convection. These terms are modelled as a first-order
Arrhenius reaction and by Newtonian cooling, respectively. Barnes and
Fulford [1] provide further details of the model.

The recent incidences of compost ignition in NSW motivated an assignment
using a toy model for the spontaneous combustion of industrial compost
piles [2]. This provided a topical case study for students, who were aware of
fogo recycling in New South Wales.

Students made heavy weather of this case study and their marks were lower
than our expectations. Students in this subject usually submit hardcopy
solutions. However, in 2021, as a consequence of covid, they submitted
their assignments via moodle. This meant that at the end of session it
was possible to examine the solutions. We discuss some of the assignment
questions/solutions provided by 19 students.

One motivation for our article is to bring the underlying model to a wider
audience. We believe this to be of interest because it can be analysed using
techniques commonly taught to undergraduates. Our second motivation is
to bring to the attention of prospective users some of the problems that our
students experienced in the hope that to be forewarned is forearmed.
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2 The model
Extending the basic Semenov model to include the rate of heat generation
due to the microbial reactions in compost piles, whilst excluding reactant
consumption, results in the equation [2]

dθ
dt∗

=
ψb exp(θ)

1+ β exp(αdθ)
+ψo exp(αoθ) − θ . (2)

The left-hand side of (2) is the rate of change of the dimensionless temperature
difference between the stockpile and its environment. The first two-terms
on the right-hand of (2) are, respectively, the rate of heat generation due to
microbial reactions and the oxidation of organic materials. The final term
models convective heat transfer between the stockpile and its surroundings.
(Note that the chemical oxidation term in (2) contains a parameter αo which
does not appear in (1). This is due to the underlying models being scaled in
different ways.) All parameters are non-negative.

To simplify the model we only consider heat generation due to biological
reactions, that is ψo = 0 . The main experimental control parameter is the
biomass Semenov number ψb, which is a function of the size of the compost
pile, that is it is a quantity that the pile operator can control. The parameters
β and αd are related to the kinetics of biomass deactivation. The former is a
deactivation rate whilst the latter is a scaled acivation energy.

3 Heat release rate
Sometimes the behaviour that we are modelling imposes constraints on
parameter values. The following question explores this concept.

Question 1 At sufficiently high temperatures micro-organisms die quicker
than they can reproduce. Thus the rate at which heat is released by biological
reactions must eventually be a decreasing function of temperature. Does this
impose any restrictions on the values of any of the model parameters?
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The rate of heat release is the first term on the right-hand side of equation (2)

R =
ψb exp(θ)

1+ β exp(αdθ)
, (3)

⇒ dR
dθ

=
ψb exp(θ)

[1+ β exp(αdθ)]
2
· [1+ β(1− αd) exp(αdθ)] . (4)

From this we find that

dR
dθ

= 0⇐⇒ 1 = β (αd − 1) exp(αdθ) . (5)

Consequently, for the rate of heat release to eventually be a decreasing function
we require αd > 1 .

• Seven students went wrong at the start by incorrectly identifying the
expression for the rate of heat release, writing

R =
ψb exp(θ)

1+ β exp(αdθ)
− θ .

This indicates that students did not see a distinction between the rate
of change of heat content of a stockpile and the rate at which heat
is released by biological reactions. This uncertainty could have been
clarified by recourse to the discussion of the Semenov model in the
lecture notes.

• Three students correctly obtained the condition αd > 1 through the
use of a calculus argument. An additional five students obtained equa-
tion (4). However, four did not see how to proceed from this point.

• One student commented “not sure where to go from here or if I’m even
on the right track ”. Finally, one student obtained the inequality

1

β(αd − 1)
> 0 ,

but incorrectly deduced from this that αd > 0 .
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• Four students scored full marks via a different argument that considered
the limiting value of the heat release rate as θ→ ∞:

lim
θ→∞R = lim

θ→∞
ψb exp(θ)

1+ β exp(αdθ)
= lim

θ→∞
ψb

exp(−θ) + β exp [(αd − 1) θ]

= lim
θ→∞

ψb

β exp [(αd − 1) θ]

=


dne 0 < αd < 1 ,
ψb

β
αd = 1 ,

0 αd > 1 .

(6)

4 Steady-state diagram: S-shaped behaviour
Consider the non-linear differential equation model

dx
dt

= f(x, µ) ,

where µ is a parameter. A standard approach to study such models is to
construct the steady-state diagram. This shows how the steady-state solutions
and their stability change as the control parameter is varied. The steady-state
solutions are found by solving the equation

f(x, µ) = 0 . (7)

There are two common ways to determine the stability of a steady-state
solution x∗. We may either evaluate the eigenvalue λ = f′(x∗, µ) or we can
determine the stability by sketching the function y = f(x, µ) .

Question 2 In this question we take β = 0.01 and αd = 1.1 .

1. Obtain the steady-state diagram showing the dimensionless tempera-
ture as a function of the biomass Semenov number over the region
0 6 θ 6 12 .



4 Steady-state diagram: S-shaped behaviour C214

A more challenging question would remove the restriction 0 6 θ 6 12 .
Students would have to determine the appropriate range by finding the
location of the limit points.

The steady-state diagram 1 is the classic S-shaped response curve that is
obtained in many combustion problems. It contains three branches: a ‘low’
temperature branch, an ‘intermediate’ branch, and a ‘high’ temperature
branch. We show in the answer to the next question that these branches are
respectively stable, unstable, and stable. From the perspective of composting,
the lowest branch is undesirable, representing stockpiles with a negligible
degree of composting. The highest branch is desirable, it represents stockpiles
where a significant amount of composting occurs. The control parameter ψb
is a function of several parameters, but most importantly it is a function of
the geometry of the compost pile: ψb ∝ V/S , where V is the volume and
S the surface area of the stockpile.

2. Your diagram should indicate the stability of the solution branches: you
must show how you have determined this.

The first step in the solution is to construct the steady-state diagram without
determining the stability of the solutions. This is shown in Figure 1(a). At
the steady-state the right-hand side of equation (2) is rearranged to give

ψb =
1+ β exp(αdθ)

exp(θ)
· θ. (8)

• Eight students generated values for θ and used equation (8) to calculate
the corresponding values for ψb. They used a variety of packages
to plot θ as a function of ψb: Excel (one student), matlab (three),
Python (one), and RStudio (three). Five of the students provided details
on the spacing of the θ points: two took ∆θ = 1 , and one each used
∆θ = 0.119 , ∆θ = 0.01 , and ∆θ = 0.001 .

• Equation (8) gives ψb as a function of θ. A number of packages can
use this definition to plot θ as a function of ψb. Six students took this
approach: five used desmos and one used “an online grapher”.
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(a) Steady-state diagram without sta-
bility.
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(b) Steady-state diagram with stability.

Figure 1: Steady state diagram for the compost model without chemical
heating (S-shaped behaviour). In (b) the black and blue lines represent stable
and unstable steady-state solutions, respectively. Parameter values: α = 1.1 ,
β = 0.01 , ψ0 = 0 .

• Five students provided no insights into how they obtained Figure 1(a).

The next task is to deduce the stability of the steady-state solutions shown
in Figure 1(a). This figure has two limit-points. These divide the steady-
state diagram into three regions. Denote the location of the limit-points
by (ψb,e, θe) and (ψb,i, θi) with ψb,i > ψb,e . The first region is given by
0 6 ψb < ψb,e , the second region is given by ψb,e < ψb < ψb,i , and the
third region is given by ψb > ψb,i . In these regions, for a fixed value of ψb,
there are one, three, and one steady-state solutions, respectively. (For readers
familiar with combustion theory, the subscripts e and i denote extinction and
ignition limit points respectively.)

In each region the stability can be determined by sketching the derivative (2)
as a function of the scaled temperature. The derivative is positive when θ = 0
and is negative for sufficiently large θ. Thus, when there is a single steady-
state solution it is stable. When there are three steady-state solutions the
lowest and highest are stable whilst the middle is unstable. No student took
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this approach—perhaps indicating a lack of expertise in graphing functions.

• Sixteen students picked a representative value for ψb in each region
and used a graphics package to plot the derivative as a function of the
temperature. They then determined the stability of the steady-state
solutions. Of these students, four considered five cases, adding the two
special cases when either ψb = ψb,e or ψb = ψb,i in which there are two
steady-state solutions.

• One student used equation (8) to eliminate ψb from the eigenvalue
expression. Consequently, the eigenvalue can be plotted as a function
of θ. The values of θ at which the stability changes are the zeroes of
this function.

• One student provided a correct answer without any working and one
student assumed that the stability is identical to that in the Semenov
model.

3. You should determine the location of any bifurcation points on your
steady-state diagram.

The steady-state diagram contains two limit-point bifurcations. The steady-
state equation (7) has the form

G (x, µ) = 0 . (9)

Informally, a limit point occurs at the point (x, µ) = (x0, µ0) when

G (x0, µ0) = Gx (x0, µ0) = 0 . (10)

(Two non-degeneracy conditions must be checked.) The limit points are

(ψig, θig) = (0.3791, 1.034) , (ψext, θext) = (0.1160, 5.094) .

Three students were unable to identify the location of the bifurcation points.
Four students did not explain how they identified the location of the limit
points. A variety of approaches were used.
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• One student determined the singularity equations (10). From these they
obtained an equation only containing the state variable θ. They found
the roots by plotting this θ. They commented “when graphing this
question, I switched to Symbolab to plot as it was easier to manipulate
than python. I attempted to use desmos and while the graphing was
fast, this resulted in lack of accuracy and large errors”. It is encouraging
to see a student use a variety of packages and then picking the most
suitable. A fruitful classroom activity would be for students to discuss
their different approaches.

• Viewing the bifurcation parameter ψb as a function of the state vari-
able θ the values of θ at the limit-points are those where dψb

dθ is zero.

Six students plotted this derivative as a function of θ and found its
roots. Two student used Wolfram Alpha to find the value of θ when
the derivative is zero. (One student used Wolfram Alpha to determine
the derivative whilst the other calculated it by hand.) One student did
not find the corresponding values of the bifurcation parameters.

• Using an appropriate software package the coordinates can be found by
‘clicking’ on the bifurcation points (three students).

• One student found the approximate location of the limit points by
“examining the graph”. They then “scrolled through the data” to find
“the exact points at which the bifurcations could be located”.

• One student estimated the location of the lower limit-point from a
hardcopy print of their steady-state diagram.

These approaches are listed in decreasing degree of sophistication. We feel
that students would benefit more from a classroom discussion of different
approaches to this question rather than merely receiving a solutions sheet.

4. In industrial composting, ‘moderate’, but not negligible, temperatures
rises are required. Interpret your diagram in terms that are useful for
the operator of a compost pile.
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(When the oxidation reactions are included they create an additional
branch of even higher temperature solutions).

The first part of the solution discusses the signifiance of the three branches,
this discussion is presented following Question 2.

If the stockpile is sufficiently small, that is ψb < ψb,e , then there is only one
steady-state solution. This low-temperature scenario represents ‘composting
failure’. If the stockpile is sufficiently large, that is ψb > ψb,i , then there is
only one steady-state solution. This high-temperature scenario represents
‘successful composting’. For values of the stockpiles between these extremes,
that is when ψb,e < ψb < ψb,i , there are three steady-state solutions, with
0 < θ1 < θ2 < θ3 . The steady-state solution θ2 represents a point of
transition. If the initial temperature θ (0) is higher than θ2, then the system
evolves to the highest branch. Conversely, if θ (0) < θ2 , then the system
evolves to the lowest branch. Thus, in the region in which there are three
steady-state solutions, the temperature at which the stockpile is assembled
determines whether the composting process is a success or a failure.

The analysis of the steady-state diagram, Figure 1, is very similar to that of
the Semenov model, which is in the lecture notes. The difference is that in
the composting problem the high temperature branch is a desirable outcome,
whereas in the Semenov model it is undesirable. Despite this analogy this
question was very poorly done.

• Only one student scored full marks whilst six students scored zero.

• Five students failed to discuss the role that the initial conditions play
in determining the long-term behaviour of the stockpile, despite this
being an important consideration for the Semenov model.

• Two students provided an otherwise correct description but did not
link the outcomes to the underlying physical problem. This hints at an
underlying problem, since relating mathematical results to the physical
problem that generated the model is the raison d’être not just of this
question but the subject.
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(a) Steady-state diagram with stability.
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(b) Blow-up of figure (a).

Figure 2: Steady state diagram for the compost model without chemical
heating (unique solution). Parameter values: α = 1.1 , β = 0.1 , ψo = 0.

• Two students thought that the high-temperature branch was undesirable.

• Two students found other ways to lose marks.

5 Steady-state diagram: unique solution
Question 3 In this question we take β = 0.1 and αd = 1.1 .

This question had the same format as Question 2. The steady-state diagram
is shown in Figure 2: for these parameter values there is always a unique
steady-state. We only consider the final part part of the question.

4. In this application, ‘moderate’, but not negligible, temperatures rises
are required. Interpret your diagram in terms that are useful for the
operator of a compost pile.

In answering this question, students were left to their own devices. One
approach is to note that the temperature at the extinction limit-point in
Figure 1(a) is θext = 5.094 . Therefore, from a practical perspective, any
steady-state temperature with θ > 5.094 corresponds to composting. This
gives a critical value for the biomass Semenov number that guarantees good
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composting as ψb = 0.879 . A second approach is to look at the derivative dθ
dψb

along the solution branch and to argue that criticality corresponds to the
value of ψb with the highest gradient.

6 Conclusions
Recent incidences of the self-ignition of compost stockpiles in NSW motivated
the writing of an assignment about biological self-heating. We have provided
an overview of how our students approached some of the questions. The
questions required students to combined pen-and-pencil calculations with
numerical calculations. Although students used a variety of approaches to
reach their final answers only the lecturer was aware of this.

A good example of this was a question relating to parameter restriction within
the context of the term modelling biological self-heating. Some students
approached this through calculus whilst others approached it by taking an
appropriate limit. It would be useful to have a mechanism by which students
can see that there is not always one approach to solve a problem.

Our investigation would have been improved by interviewing students, to
have them explain and discuss the problems they had with the case study.
This would have provided their perspective on their choice of approaches.
Unfortunately, as this is a third year subject the majority of students were
unavailable for interview.

Smoke has sometimes been observed coming from stockpiles running the fogo
process. Such behaviour is not possible in the model considered by students;
the assumption ψo = 0 removes heat generation by oxidative processes. The
inclusion of this term provides insights into the safe construction of a stockpile.
The resulting model is more appropriate for an honours subject.
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