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Analysing the stability of graphene wrinkles
using variational calculus
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Abstract

The chemical vapour deposition method is widely used to synthesise
high quality graphene with a large surface area. However, the cooling
process leads to the formations of ripples and wrinkles in the graphene
structure. When a self-adhered wrinkle achieves the maximum height,
it then folds onto the surface and leads to a collapsed wrinkle. The
presence of such deformations often affects the properties of graphene.
In this article, we describe a novel mathematical model to understand
the formation and geometry of these wrinkles. The stability of these
wrinkles is examined based on variational derivations for the energy
of each structure. The model provides detailed explanations for the
geometry of these wrinkles which would help in tuning their properties.
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1 Introduction
Graphene consists of carbon atoms hexagonally arranged in a two-dimensional
array. This structure has unique electronic, mechanical, and thermal proper-
ties [2, 5], which open doors for potential applications in many fields including
engineering and biomedicine [6]. Graphene has been synthesised using various
methods which can be classified into two broad approaches, the top-down
approach and the bottom-up approach. In the top-down approach, graphene
is derived from graphite, or multi-layer graphene, by enlarging the spac-
ing distance between the graphene sheets in order to weaken the van der
Waals (vdw) interaction energy. In the bottom-up approach, graphene is
generated by building a block of carbon molecules. A well-known example
for the bottom-up approach is chemical vapour deposition (cvd).

The cvd process involves epitaxial growth of graphene on a substrate at an
elevated temperature [8]. During the cooling step, the differential thermal
expansion of the graphene and the substrate leads to compressive forces on the
graphene film. These forces lead to some graphene configurations including
a ripple, an arch-shaped wrinkle, a standing self-adhered wrinkle (saw)
and a collapsed wrinkle (cw). These configurations alter the graphene
electrical mobility [17], thermal conductivity [3, 11], and strain sensitivity [13].
Accordingly, understanding the formation of such configurations is essential
to exploit the novel properties of folded graphene.
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Table 1: Previous results for the transition height htran.
Study substrate htran (Å)
Experiment [7] SiO2/Si 50

Experiment [17] SiO2/Si 60

Experiment [10] SiO2/Si 101.5

Experiment [12] Cu(111) 110

Theory [16] ignored 69

Theory [12] Cu(111) 76

Theory [17] SiO2/Si 84

A cw forms when a saw folds towards the substrate after the maximum
height is achieved. This maximum height of the saw is the transition point
between different graphene wrinkles, and hence it has been investigated
both experimentally and theoretically. Experiments report values for this
transition height from 50 to 110Å, where theoretical works report values
from 69 to 84Å. These values depend on the materials of the substrate and
they are summarised in Table 1. In this work, we utilise variational calculus
to analyse the stability of graphene wrinkles. We use our model to predict
numerical values for the transition length and height of saw.

2 Modelling approach
We consider two configurations of graphene wrinkles, the saw and the cw, as
shown in Figure 1. Cox, Dyer, and Thamwattana [4] employed the calculus
of variation to model the conformation of saw (shown in Figure 1(a)), taking
into account two energies, the bending elastic energy and the vdw interaction
energy.

The elastic energy Ee is only considered in the regions where the graphene
sheet bends, which for the saw are the curves C1 and C2 in Figure 1(a). This
energy is modelled by the integral of the square of the line curvature κ over
the length of the bended region scaled by the bending rigidity of graphene γ.
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(a) (b)

Figure 1: Representations for the geometry of graphene wrinkles, (a) a saw,
and (b) a cw.

The elastic energy of the saw is mathematically modelled by the functional

Ee = 2γ

(∫
C1

κ2 ds+

∫
C2

κ2 ds

)
,

where s is the arc length of the curve.

The vdw energy is only considered in the regions where a graphene layer
becomes parallel to another graphene layer or to the substrate. This energy
is modelled by multiplying the length of those regions by the strength of the
vdw interaction energy. The vdw interaction energy for the saw is

Ev = −εgs(xend − x1) − εgg(y2 − y1) ,

where εgs and εgg denote the graphene-substrate and graphene-graphene vdw
interaction strengths, respectively.

A similar approach was taken by the present authors to model the more
complicated configuration of the cw (shown in Figure 1(b)) [1]. We assume
that both the saw and cw have the same shape near where the wrinkle
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attaches to the substrate, and so we name this curve C2 in both wrinkles.
The elastic energy is only considered in the bended regions, which in the cw
configuration are curves C2, C3 and C4. Hence, the bending elastic energy is
the functional

Ee = γ

(
2

∫
C2

κ2 ds+

∫
C3

κ2tot ds+

∫
C4

κ2 ds

)
,

where κtot is the total squared curvatures of the two lines in the curve C3.
The vdw interaction energy of the cw is

Ev = −εgs(xend − x1) − εgg

[
(y2 − y1) +

∫
C3

ds

]
− ε3gs(x3 − x2) − ε2gs(x4 − x2) ,

where εNgs denotes the strength of the vdw interactions as N-layer graphene
interacts with the substrate, for N = 2, 3. The distance (y2−y1) is introduced
for modelling simplification, but we use y2 = y1 in the analysis to satisfy the
physical condition of the cw.

This model involves a number of physical parameters relating to the interaction
between graphene and the substrate. Here we apply this model to analyse the
stability of graphene wrinkles located on a Cu(111) substrate and therefore
the appropriate values for Cu(111) parameters are adopted by the model.
These parameters are presented in Table 2. In our analysis, we adopt different
values for the bending rigidity γ from the range given in Table 2.

The calculus of variations is employed to minimise the energy of each config-
uration. The approach relies on solving the Euler–Lagrange equation while
applying the natural boundary conditions to obtain explicit formulae for the
line curvature κ(θ) at each point (x, y) with a tangential angle θ measured
from the positive direction of the x-axis. For i ∈ {1, . . . , 4}, the obtained
expression for line curvature κCi

(θ) of the curve Ci is utilised to:

• derive a parametric solution for the shape of the curve by solving the
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Table 2: Numerical values for the parameters used in this model.
Parameter Value Source
γ (eV) 0.83–1.61 [14]
2δgg (Å) 3.34 [9]
εgg (eV/Å2) 0.0214 [9]
εgs (eV/Å2) 0.0132 [15]
ε2gs (eV/Å2) 0.0238 [1] (using LJ potential)
ε3gs (eV/Å2) 0.0243 [1] (using LJ potential)

pair of equations

xCi
=

∫
Ci

cos θ
κCi

(θ)
dθ , yCi

=

∫
Ci

sin θ
κCi

(θ)
dθ ;

• calculate the length of the curve by integrating ds over the length of
that curve, that is

LCi
=

∫
Ci

ds =

∫
Ci

dθ

κCi
(θ)

;

• calculate the energy of the curve by integrating the squared curvature
over the length of that curve multiplied by γ, that is

ECi
= γ

∫
Ci

κ2Ci
(θ)ds = γ

∫
Ci

κCi
(θ)dθ .

We denote the total length of the wrinkle (the solid lines in Figure 1) by Ltot

and the corresponding total energy by Etot = Ee + Ev . For the saw, the total
length and total energy are, respectively,

Ls
tot = 2 [LC1

+ (y2 − y1) + LC2
] ,

Es
tot = 2 (EC1

+ EC2
) − εgg(y2 − y1) .
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(a) (b)

Figure 2: Representations for the geometry of: (a) cwa, and (b) cwb.

For the cw, the total length and total energy are, respectively,

Lc
tot = 2LC2

+ LC3
+ LC4

+ (x3 − x2) + (x4 − x2) , (1)
Ec

tot = 2EC2
+ EC3

+ EC4
− ε3gs(x3 − x2) − ε2gs(x4 − x2) . (2)

3 Results
We now apply our model to consider two configurations for the cw which
we name Collapsed wrinkle A (cwa) and Collapsed wrinkle B (cwb) and
illustrate in Figure 2(a) and 2(b), respectively. The only difference between
these configurations is the flat region following the folded bilayer (the curve C3)
seen in cwb but not in cwa. The two configurations are dependent on a
competition between the elastic energy and the vdw interaction energy.
The cwa maximises the elastic energy, while the cwb minimises the vdw
interaction energy. The total length and energy are given by equations (1)–(2),
but we set x2 = x3 for cwa.

Considering that the structure with minimum energy is energetically favourable,
we account for the change in the total energy as the total length increases.
The total length of cwa is increased by enlarging the folded bilayer section C3.
For cwb, the total length is increased by lengthening the flat region (x3− x2).
The total energy Etot is expressed in terms of the total length Ltot from which
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Figure 3: The gradients of the total energy Etot with respect to the total
length Ltot: cwa (solid curves), and cwb (the dashed curve).

the gradient of the curve is examined and representative plots are shown in
Figure 3. The solid curves are the energy gradients of cwa which depend
on the length of the curve C3, while the horizontal dashed line is the energy
gradient of cwb which is −ε3gs, the coefficient of x3. The intersection points
correspond to the lengths at which the cw starts producing the flat region.
In other words, the intersection points indicate the transition length from
cwa to cwb.

To obtain the length at which each configuration becomes stable, we perform
an energy comparison between the saw, cwa and cwb. The total length
of the saw is increased by lengthening the parallel region (y2 − y1). The
highlighted point in Figure 4, denotes the transition length and energy from
saw to cwb. The energy comparison also shows that cwa never occurs
since there are always other structures with lower energies. However, cwa
is utilised to obtain the starting length for cwb. Once the transition length
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Figure 4: The total energy Etot versus the total length Ltot for saw (solid
curves), cwa (dotted curves), and cwb (dashed curves), with the points
indicating the transition lengths and energy from saw to cwb.

Table 3: Values for Ltran and htran of graphene wrinkles on Cu(111) substrate.
γ (eV) 0.8 1.0 1.2 1.4 1.6 1.2 [12]
Ltran (Å) 143 158 175 190 207 −
htran (Å) 64.9 72.0 79.6 86.5 94.3 76.0

is determined, we then utilise the work by Cox, Dyer, and Thamwattana [4]
to calculate the transition height at which the saw folds over the substrate
forming the cwb. Table 3 presents numerical values for the transition length
and transition height obtained from this work for linearly spaced values of γ.
For a bending rigidity γ = 1.2 eV, we obtain transition height htran = 79.6Å
which is consistent with the previous result of htran = 76.0Å [12]. Finally,
Figure 5 shows the predicted profiles of the cw on a Cu(111) substrate with
transition length Ltran and different values of γ.
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Figure 5: The obtained profiles for cwa with Ltot = Ltran, located on Cu(111)
substrate.

4 Conclusion
This work provides theoretical analysis for the stability of graphene wrinkles.
Mathematical models for graphene saw and cw are utilised [4, 1]. The
analysis is performed based on variational derivations for the energy of each
configuration. Through an energy comparison, we find that the cw always
contains a flat region between the curves C3 and C4. Utilising the work of Cox,
Dyer, and Thamwattana [4], we also calculate the transition length and height
of the saw and obtain consistent values with reported measurements. The
findings of this work enhance our knowledge of the geometry of these structures.
This work may be extended to consider other substrates by applying the
appropriate values for the parameters listed in Table 2.
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