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Treating cancerous cells with a continuous
release of virus particles
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Abstract

We investigate a model for the treatment of a tumour through the
application of a virus. In the original model it was assumed that the
virus particles are released only at one time. Such a treatment strategy
cannot eliminate a tumour, as the tumour-free steady-state solution
is unstable except for pathological circumstances in which the tumour
does not grow and/or the virus does not die. We extend the model
by allowing the tumour to be treated by a continuous release of virus
particles. We show that the scaled delivery rate has two threshold
values: below the lower threshold the system evolves to a stable periodic
solution; above the higher threshold the tumour is eradicated.
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1 Introduction

Oncoloytic virotherapy is the treatment of a tumour using a virus that targets
cancer cells without harming normal healthy cells. The virus infects cancer
cells producing infected cancer cells. Once inside a tumour cell the virus
replicates. Eventually the virus particles cause the infected tumour cell to
break down and die. This releases a ‘burst’ of new virus particles. As virus
particles do not harm healthy cells, this offers a mechanism to specifically
target cancer cells. Figure 1 illustrates the biological processes in the model.

Many naturally occurring viruses are being investigated for their use as vi-
rotherapy agents. Advances in genetic technology offer the possibility of
‘tuning’ these viruses so that they only attack uninfected tumour cells. Enge-
land et al. [1] recently reviewed oncolytic virotherapy and combined oncolytic
virotherapy and immunotherapy from both biological and mathematical per-
spectives.
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Figure 1: The biological processes included in the model. State-variables:
U represents uninfected tumour cells, I represents infected tumour cells, and
V represents virus particles.

We extend an existing model [2] by replacing a one-off release of virus particles
by a continuous release. Experimentalists and clinicians are turning to
continuous release protocols because they result in the most effective long-
term therapy as the presence of the virus at the tumour site is extended
for longer; this has a larger impact on the tumour. Controlled release of
virus particles can be performed in vivo through the use of injectable gels or
polymer matrix systems. Jenner et al. [3] provide details on hydrogels which
release virus particles continuously over time. We show that there are two
threshold values for the release rate. If the release rate is above the threshold,
then the tumor is eradicated. If the release rate is above the lower threshold
value, but below the second, then the system evolves to a stable steady-state
solution. If the release rate is below the lower threshold value then the system
evolves to a stable oscillatory state.
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1.1 Literature review

Oncolytic virotherapy is a very appealing strategy for the treatment of
tumours. Tian [4] proposed a basic model for oncolytic virotherapy which
describes rates of change of uninfected tumour cells, infected tumour cells
and infected virus particles, respectively,

du:ru(]—u;1> — Buv,

dt

di .

Fri Buv —dji,

dv )

a = adii— fuv — dyv.

Here, u, 1 and v are the uninfected tumour cell population, the infected
tumour cell population, and the free virus population, respectively. The
tumour load is T (t) = w(t) +1(t). The parameters in the model are: the
carrying capacity for tumour cells K; the per-capita decay rate of infected
tumour cells and virus particles, d; and dy, respectively; the maximum per-
capita growth rate of uninfected tumour cells r; the ‘burst size’ or average
number of virus particles released from one infected tumour cell «; and a rate
constant 3.

Burst size « is a bifurcation parameter with two threshold values [4]. Below
the lower threshold, o < o; = 14 d,/ (BK), virotherapy always fails as the
tumour goes to its carrying capacity. Between the lower and upper threshold
virotherapy is partially successful; there is a stable steady-state with a reduced
tumour load. The second threshold value is a Hopf bifurcation. (The value
for the burst size at the Hopf bifurcation is not “algebraically expressible” [4,
page 855|.) As the burst size increases the tumour load can reach very small
values, which may correspond to the eradication of the tumour. There may
be additional Hopf bifurcations at even higher values of the burst size.

Jenner et al. 2| analysed a minimal model for oncolytic virotherapy (1)—(3)
which “complements other oncolytic models.” Using steady-state analysis
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they deduced that “oncolytic viruses can reduce growing tumours into a stable
oscillatory state, but are insufficient to completely eradicate them” a tumour
is eradicated only if it does not grow and/or the virus does not decay. They
therefore proposed that the eradication of a tumour requires combining an
oncolytic virus with the use of additional anti-cancer agents.

2 Model equations

2.1 Dimensional model equations

Here we use a slightly different model to that of Jenner et al. [2| discussed in
Section 1.1:

((11—: =r1u— Buv. (1)
di .

P Buv —dii, (2)
dv .

d_"[ :R—dvv+06d11. (3)

Parameters have the same meaning as in Section 1.1, and we have added a
‘virus delivery term’ R to the rate of change of the infected virus particles.

2.2 Dimensionless model equations

We scale the dimensional model (1)—(3) by introducing the dimensionless
variables scaled as U = («f/dj)u, I = («f/dy)i, V = (B/d;)v, and
t = d;t. The scaled rate of change of uninfected tumour cells is

du
—=&Uu-uv 4
the scaled rate of change of (scaled) infected tumour cells is
dl
— =uv-I, (5)

dt
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and the scaled rate of change of virus particles is

dav
— =R*"—mV +1 6

where the bifurcation parameter is the scaled delivery rate R* = ([3 / d%) R.
The other scaled parameters are m = dy/d; and & =r/d;.

3 Results

3.1 Steady-state solutions
For positive delivery rates R* > 0 there are two steady-state solutions.

The eradicated steady-state solution is
R*
(U, Lv)=(0,0,V), V.= el (7)
The eradicated steady-state represents elimination of the tumour.

The coexistence steady-state solution is

(u) I,V) = (UC) IC)VC) ) uc =m— R? ) (8)

I, = m&—R*, V.=&.

The co-existence steady-state represents a partial eradication of the tumour
and a non-zero viral load within the remaining tumour. This steady-state is
not stable in one-off release models [2, 4].

By inspection, a transcritical bifurcation occurs when R* = m¢, .

3.2 Stability calculations

The Jacobian matrix evaluated at the eradicated solution (7) is

E—V. O 0
J(0,0,V.) = V, -1 0
0 1 —m
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The eigenvalues of this matrix are
M=&E—Ve, AM=-1, A3=-—m.
Hence the eradicated steady-state is stable when
R* > mé. 9)

The interpretation of equation (9) is that a tumour can be eradicated by a
constant supply of a virus, provided that the supply rate is sufficiently large.

The Jacobian matrix evaluated at the co-existence solution (8) is

0 0 —U.
I(UC)IC)VC) - Vc —1 uc
O 1 —m

The characteristic polynomial is
P =7+ oA+ aA+ag,
where
a=1+m, a; =m— U, ap = U.V,.

The eigenvalues of the Jacobian have negative real parts if and only if a; > 0,
ap > 0 and aya; > ap (the Routh-Hurwitz criterion). The condition a; > 0
holds since m > 0. Since V., = & > 0 the inequality ag = U.V, > 0 boils
down to U, = m — R*/& > 0. Hence the coexistence steady-state is unstable
when mé < R*. Thus a necessary condition for the coexistence steady-state
to be stable is

mé& > R*.

We now consider the final condition of the Routh-Hurwitz criterion. We find
that
mé?

—ay>0 R > ———,
aza; — aop = T
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Thus the co-existence steady-state is stable if

R} < R* <R3,
where
mé?
R = ——F— d R} = .
I S——— an > =mé§

A Hopf bifurcation occurs at R* = Rj . The significance of the Hopf bifurcation
is that it acts as a ‘centre’ at which limit cycles are either destroyed or created.

4 Discussion

Figure 2 shows a bifurcation diagram for &, m = 0.5 which plots the scaled
concentration of uninfected tumour cells as a function of the scaled delivery
rate R*. For sufficiently small values of the delivery rate, both steady-state
solutions are unstable and solutions converge to a stable periodic solution.
As the delivery rate is increased, the periodic solutions are terminated at the
Hopf bifurcation R* = R} = 0.0625. As the delivery rate is increased through
the Hopf bifurcation, the coexistence steady-state solution is now stable.
As the value of the delivery rate is increased further there is a transcritical
bifurcation at R* = R = 0.25, also call the branch point. As the delivery
rate is increased further the eradicated steady-state solution becomes stable
and the coexistence steady-state solution is no longer physically meaningful.

Figure 2 marks four points (a—d) on the periodic solution branch. Figure 3
plots the solutions in the uninfected-infected tumour cell phase plane at these
four points. Figure 2 shows that the maximum value for the scaled uninfected
tumour cells increases as the delivery rate decreases towards zero. However,
focusing on the maximum value of the solution component along the periodic
solution does not show the full picture: the maximum value is increasing, but
what is happening to the minimum value?

Curve (d) in Figure 3 shows that both the scaled uninfected tumour U and
the scaled infected tumour I can become very small. The minimum values
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Figure 2: Steady-state diagram for parameter values & = m = 0.5. The
location of the branch point is denoted by BP. Solid and dashed lines
represent stable and unstable branches of solutions, respectively. For the
periodic solution we only plot the maximum value of the solution. Phase-plane
diagrams corresponding to the points (a—d) are shown in Figure 3.

of these variables could be so low that they correspond to less than a single
uninfected /infected tumour cell. Depending upon which (unscaled) state
variable reduces to less than one cell first, such a periodic solution would
correspond to either eradication of the tumour (less than one uninfected
tumour cell), or the absence of infected tumour cells (less than one infected
tumour cell). Thus in practical terms such oscillations can represent tumour
eradication. (Although these periodic solutions are a correct solution to the
mathematical model, they are not a correct solution to the underlying physical
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Figure 3: Phase-plane diagram of the four periodic solutions (a—d) identified
in Figure 2 for parameter values & = m = 0.5. Delivery rates are (a) R* =
0.0614, (b) R* = 0.0575, (c) R* = 0.0446 and (d) R* = 0.0153.

problem.) A similar observation has been made by Tian [4, Sec. 4.1]. This
leads to an unintuitive interpretation of the model: sometimes lower delivery
rates are more dangerous to a tumour than higher delivery rates.

Figure 4 shows the scaled population numbers as a function of scaled time in
the region where both steady-state solutions are unstable. The introduction of
the virus has not eliminated the tumour, but it has restricted its growth. As
commented by earlier authors |2, 4], when such behaviour occurs an additional
treatment strategy should be employed. This figure suggests that for best
effect the second treatment method should be deployed when the number of
infected and uninfected tumour cells is minimised.
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Figure 4: Variation in the scaled population numbers U, I and V with scaled
time for parameter values & = m = 0.5, R* = 0.05.

5 Conclusions

We have extended a model for oncolytic virology by allowing a continuous
release of virus particles into a tumour. We showed that a virus can destroy
a tumour, provided it is released at a sufficiently high rate. Release rates
below this threshold value result in the tumour being partially eradicated,
with either a stable steady-state solution or a stable oscillatory state. In the
original model complete eradication only occurs when the tumour does not
grow and/or the virus does not decay. Thus continuous release can eliminate
a tumour without requiring a second treatment strategy.

Casting the condition for complete eradication of the tumour into dimensional
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form we obtain the requirement that

d\/T’
R>R, =—.
B

To reduce the critical value of the release rate R, genetic modifications
of the virus should either reduce the virus decay rate dy or increase the
rate of infection 3. The critical value can also be reduced by combining
virotherapy with a second treatment strategy that decreases the replication
rate of uninfected tumour cells .

Rather than considering protocols in which there is either a one-off release or
a continuous release, it would be interesting to consider impulsive releases
at times t = t;,t5,t3.... When virus particles are delivered to solid tumours
some cells may receive a much higher dosage, particularly if they are closer
to the vasculature. This issue can be investigated by using partial differential
equations with a non-uniform initial condition for the virus particles.

Finally, when the eradicated state is stable an interesting question to pose is
‘how long does it take to eradicate the tumour?” We define the eradication
time to be the time at which the number of tumour cells decreases below one,
if this occurs in a finite time. Estimating this time scale is very relevant to
treatment.
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