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Improving the accuracy of retrieved cardiac
electrical conductivities
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Abstract

Accurate values for the six cardiac conductivities of the bidomain
model are crucial for meaningful electrophysiological simulations of car-
diac tissue and are yet to be achieved. A two-stage optimisation process
is used to retrieve the cardiac conductivities from cardiac potentials
measured on a multi-electrode array—the first stage simultaneously
fits all six conductivities, and the second stage fits a subset of the con-
ductivities (intracellular conductivities), while holding the remainder
of the conductivities (extracellular conductivities) constant. Previous
studies have shown that the intracellular conductivities are retrieved
to a lesser degree of accuracy than extracellular conductivities. This
study tests the proposition that there exists a relationship between the
extracellular and intracellular conductivities during the second stage of
the optimisation that affects the accuracy of the retrieved intracellular
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conductivities. A measure to quantify this relationship is developed
using polynomial chaos. The results show that a significant relation-
ship does exist, and thus any errors in the extracellular conductivities
are magnified in the retrieved intracellular conductivities. Thus, it is
suggested that future protocols for retrieving conductivities incorporate
the uncertainty in the extracellular conductivities.
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Introduction

Meaningful simulation studies of the heart are a helpful tool in facilitating
an understanding of electrical conduction defects that cannot be achieved
through experimental means alone [4]. The bidomain model [12] is commonly
used to simulate cardiac potentials in two interpenetrating domains, extracel-
lular e space and intracellular i space, through a continuum approximation.
However, key parameters of the model, such as the cardiac conductivities, are
yet to be determined with certainty.
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Cardiac fibres are arranged in laminar sheets that are stacked with a slight
offset from sheet to sheet to form the walls of the heart, thus leading to a
rotation of fibres [10]. Current propagates in three directions—along and
across the direction of the fibres (longitudinal 1 and transverse t directions,
respectively), and normal to sheets of the fibres (normal n), thus requiring a
total of six cardiac conductivity values: gi, Git, Gin, Gel, get aNd Gen.

Despite efforts over the past fifty years, difficulties associated with obtaining
and interpreting experimental measurements have prevented researchers from
obtaining accurate values for the cardiac conductivities. Several studies,
working under various assumptions, were able to obtain a subset of the
conductivities; however, a lack of consensus exists for the accepted retrieved
values due to a large variance in results between the studies. Previous
studies have proposed techniques to retrieve the cardiac conductivities through
experimental or theoretical means, although no study has retrieved all six
cardiac conductivities through experimental means alone [4].

The procedure for retrieving cardiac conductivities, considered here, first
involves making cardiac potential measurements on a multi-electrode array,
followed by a two-stage optimisation technique to estimate the cardiac con-
ductivities. Johnston and Johnston [5] showed that a 75-electrode array was
capable of retrieving all six cardiac conductivities using simulated data. How-
ever the intracellular conductivities (g1, git, gin) Were retrieved less accurately
than the extracellular conductivities (get, get, Gen)-

Examining and understanding the difficulties faced in retrieving the intracel-
lular conductivities can inform and aid in future efforts to determine these
conductivities. Hence the primary focus of this study is to investigate the
relationship between the extracellular and intracellular conductivities in the
retrieval process using polynomial chaos techniques. Section 2 outlines the
mathematical model, the measuring electrode array, the solution technique
and the optimisation (inversion) process. Section 3 summarises the polynomial
chaos techniques used in this study. The results of this study are presented
in Section 4, followed by conclusions in Section 5.
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2 Governing equations and inversion
technique

To reduce the complexity of the solution techniques, the ventricular muscle
is represented by a slab of cardiac tissue extending 2cm in the x and y
directions and 1cm in the z direction and is assumed to be in contact with
a pool of blood whose thickness extends to infinity. It is assumed that the
longitudinal, transverse and normal directions are aligned along the x, y and z
axes, respectively [8].

The distributions of the cardiac potentials through the intracellular and
extracellular spaces are given by the bidomain governing equations [12]

VoMY= D0, V- MTbe= B0 00 -1, ()

where ¢4 is the potential (q = 1i,e), B is the ratio of surface cell area to
cell volume, R is the specific resistance of the membrane separating the
intracellular and extracellular domains and I, is the current per unit volume
applied in the extracellular space. Finally, Mg represents the conductivity
tensor given by My = RDqRT where Dy is a diagonal matrix that contains
the conductivities in the longitudinal, transverse and normal directions for
the respective space and R is a 3D rotation matrix about the z-axis [12].

Equation (1) is solved by first expanding ¢4 as a Fourier series. Substituting
the resulting expansions into the governing equations yields two sets of four
ordinary differential equations which are then solved with a 1D finite difference
scheme. A full description of the solution technique, the model, the boundary
conditions, and the model assumptions is given by Johnston et al. [6].

The parameters used to solve the model are B = 2000cm ™', R = 9100 Q cm?,
I. = 1 pA cm =3, with the conductivity of the blood assumed to be 6.7 mS/cm
and the rotation of the fibres assumed to be 120°. These parameters are
consistent with values found in the literature [13, 9, 5]. The nominal con-
ductivities used for the simulations are gy = 2.40, gix = 0.24, gin, = 0.10,
get = 240, get = 1.60 and gen, = 1.00 in units of mS/cm [3].
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Figure 1: The 75-electrode multi-electrode array used for making the potential
measurements [5]. Current source and sink electrodes are marked by Sr and Sn,
respectively. Current electrodes used during the first and second-passes are
marked red and green, respectively, and the measuring electrodes are marked
blue. Electrodes are in layers named, from bottom to top, Layer 1, 2 and 3.

2.1 Electrode array and inversion

Cardiac potential measurements are made or simulated on a multi-electrode
array that consists of 25 micro-needles, each containing three electrodes
arranged in three planes (Figure 1), with the first layer of electrodes inserted
0.075 cm into the cardiac tissue. Two sets of measurements are made using
this array, referred to as first-pass and second-pass measurements. For the
first-pass measurements, the current source and sink electrodes are placed in
a ‘close’ arrangement, during which the majority of the current propagates
through the extracellular space. For the second-pass measurements, the
current injection electrodes are widely-spaced and are placed diagonally on
the array which results in a proportion of the current being re-directed into
the intracellular space [5]. The specific configurations for the current source
and sink electrodes for each measurement set are given in Figure 1.
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Due to the non-linear dependence between the bidomain conductivities and
the cardiac potentials, it is necessary to minimise the following Tikhonov
functional [1] to obtain an approximation for the conductivities given in the
vector m:

IG(M) — @[3 +v*|m]3, (2)

where G is the forward model, ¢ is the vector of measured potentials and vy is
the regularisation parameter taken to be 1072 [5]. The first-pass measurements
are used to simultaneously fit gui, git, Gin, gel, get and gen, that is m =
[Gi1y Gits Giny Gely Get, Gen) | [5]. This is referred to as the first-pass inversion.
Previous simulations have shown that a second-pass of this inversion process
is required as the intracellular conductivities are not retrieved accurately in
the first-pass inversion [9)].

A second-pass inversion, using the second-pass measurement set, aims to
refine the intracellular conductivities by fitting only these values, thus m =
[9i1, Gits gm]T. The extracellular conductivities used in the second-pass in-
version are held constant at their values found in the first-pass inversion.
Although the second-pass aims to refine the accuracy of the intracellular
conductivities, there is still a notable error in the retrieved values compared
with the retrieved extracellular conductivities. As an example, two passes
with 5% noise introduced to the nominal potentials retrieved the extracellular
conductivities to a relative error of approximately 0.5%-1.5%, while the three
intracellular conductivities had an average relative error of 6%-30% [5]. A
more detailed explanation and recent advancements in the inversion process
are given by Kamalakkannan et al. [7] and Sun et al. [11].

We hypothesise that holding the extracellular conductivities constant in the
second-pass influences the accuracy of the retrieved intracellular conductivities.
Referring to equation (2), errors in the extracellular conductivities during
the second-pass produce potentials that deviate from the true values, thus
affecting the retrieval of the intracellular conductivities. To verify this claim,
a measure to quantify the influence of the extracellular conductivities on the
second-pass cardiac potentials is required.
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3 Generalised polynomial chaos

Generalised polynomial chaos (gPC) is utilised to approximate stochastic
processes through an orthogonal polynomial expansion given that the dis-
tributions of the input parameters are known [14]. The resulting expansion
can be exploited to estimate the propagation of uncertainty from the model
inputs to the model outputs [15, 2].

A polynomial chaos expansion is constructed to approximate the cardiac
potentials of the second-pass in terms of the six cardiac conductivities. We
sample the cardiac conductivity from a uniform distribution within the
range [0.5My, 1.5M,] where M, is the nominal value of the conductivity.
Legendre orthogonal polynomials up to the sixth order are used to construct
the expansion [15]. The resulting expansion accurately approximates the
cardiac potentials to an L, relative error norm of the order 2 x 10~*. We
find changing the polynomial order to seven gave an L, relative error norm of
approximately 8 x 107>, while lower polynomial orders produced a relatively
inaccurate expansion (L, relative error norm of approximately 3 x 1072 for
polynomial order five).

Recall that we are trying to quantify the influence of the extracellular con-
ductivities during the second-pass. That is, we are interested in determining
the contribution of the extracellular conductivities to the total variance of
the cardiac potentials. The total variance of the cardiac potentials is approx-
imated by taking the variance of the polynomial expansion. Rather than
determining all the contributions to the total variance due to the extracellular
conductivities, it is more efficient to determine the contributions to the total
variance due to the interactions between the intracellular conductivities and
then taking the complement of this value. That is,

Y e VieaYal
Qe =1-— V[Y] ) (3)

where Y is a vector of cardiac potentials, c, are the expansion coefficients,
Y, are the Legendre polynomials, &« = {a1, &z, ..., &} are the set of multi-
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indices, A; is the set of multi-indices & that contains the parameters associated
with the intracellular conductivities, and V is the variance operator. The
closer Q. is to 1, the greater the influence of the extracellular conductivities
on the cardiac potentials during the second-pass. A detailed explanation of
gPC, estimating the expansion coefficient and the variances, is given by Xiu
and Karniadakis [15].

4 Results and discussion

4.1 Influence of extracellular conductivities during the
second-pass

Figure 2 presents the Q. value for each measuring electrode during the second-
pass. The results are presented on the three planes of the electrode array
that contain the electrodes in Layer 1, Layer 2 and Layer 3 (Figure 1).

Figure 2 shows that Q. is fairly close to one throughout the array with
Q. > 0.82 at all measuring electrodes. This indicates that the extracellular
conductivities have a significant influence during the second-pass. This
influence tends to be approximately symmetric along the line of the current
injection electrodes. The quantity Q. also tends to be greater along the
horizontal boundaries of the array, while the measure is at a minimum in the
middle of the electrode array on Layer 2. We believe Q. is at its lowest value
due to the symmetry of the current electrodes.

The results suggest that small errors in the extracellular conductivities dur-
ing the second-pass considerably affect the calculated potentials (G from
equation (2)), moving them away from the actual potential distribution.
Consequently, this affects the retrieval of the intracellular conductivities.
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Figure 2: The Q. values at the measuring electrodes during the second-pass.
Red nodes, and the grey segments, represent the positions of the current
electrodes, while the yellow nodes represent the measuring electrodes.
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Figure 3: Relative errors of the retrieved intracellular conductivities for a
range of errors introduced to the extracellular conductivities.

4.2 Verifying the influence of the extracellular
conductivities during the second-pass

The influence of the extracellular conductivities during the second-pass is
now verified by simulating a second-pass inversion with a small constant
error introduced to all three extracellular conductivities. By not introducing
experimental noise to the second-pass measurements, we ensure that any
errors in the retrieved intracellular conductivities are exclusively a consequence
of the errors introduced to the extracellular conductivities. Note that the
study presented here is not reflective of the actual inversion process but only
aims to provide a rudimentary illustration of the influence of the extracellular
conductivities during the second-pass. Figure 3 presents the results of this
study.

Analysing Figure 3, it is evident that errors in the extracellular conductivities
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during the second-pass are magnified in the retrieved intracellular conductivi-
ties. A linear relationship is present between the errors of the extracellular
and intracellular conductivities; however, this is due to the simplification
of the problem where the same error is introduced to all three extracellular
conductivities. The results suggest that gin is most influenced by errors in
the extracellular conductivities, followed by gy and gy;.

5 Conclusion and future recommendations

This article examined some of the difficulties associated with obtaining accu-
rate intracellular cardiac conductivity values. It was hypothesised that the
extracellular conductivities used in the second-pass govern the accuracy of
the retrieved intracellular conductivities. Thus a measure to quantify the
influence of the extracellular conductivities during the second-pass was devel-
oped. Results indicate that obtaining accurate extracellular conductivities
is crucial, as minor errors in these values can adversely affect the retrieval
of the intracellular conductivities during the second-pass. Thus a protocol
that incorporates the uncertainty of the extracellular conductivities during
the second-pass might aid in the retrieval of the intracellular conductivities.
Current research is investigating the possible use of Bayesian inference tech-
niques for conductivity estimation, as such techniques are able to evaluate the
uncertainty in the conductivity parameters and incorporate this uncertainty
into later inferences.
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