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Comparing lattice Boltzmann simulations of
periodic fluid flow in repeated micropore
structures with longitudinal symmetry and
asymmetry
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Abstract

Pumping of a particulate suspension back and forth through a
membrane of periodic axisymmetric pores results in no net flow of the
fluid; however, the particles are transported along the pores from one
side of the membrane to the other. The movement of the particles is
dependent on the geometry of the pore walls. Current simulations for
this problem utilise standard computational fluid dynamics techniques
(e.g. finite element method, boundary element method). However,
there are difficulties associated with applying these techniques to this
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problem, such as the requirement of many spatial periods. The lattice
Boltzmann method overcomes these disadvantages by utilising periodic
boundary conditions, which are straightforward to implement. Flow
simulations in longitudinally symmetric and asymmetric pores with
various Reynolds numbers are compared. The importance of pore shape
and viscous effects is showcased through streamline plots.
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Fluid flow through periodic micropore structures has widespread and multi-
disciplinary applications, such as blood flow [11]| and filtration [2|. A problem
that has received recent attention is that of a particle-laden fluid pumped back
and forth through a membrane of axisymmetric pores, where the diameter
varies along its length in a periodic manner [12]. It is possible for the particles
to be transported along the micropores despite no net fluid flow [6]. To
achieve this phenomenon, it has been suggested that the pore geometry is
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(a)

Figure 1: (a) Longitidunally symmetric micropore: sinusoidal profile. (b) Lon-
gitidunally asymmetric micropore: curved sawtooth profile.

the most influential factor; spatial periodicity with longitudinal asymmetry
is thought to be required to facilitate particle transport [4, 7]. With this in
mind, a direct comparison between symmetric and asymmetric micropores
and their resulting flow fields would aid in understanding the differences that
facilitate the movement of suspended particles. Figure 1 provides examples
of symmetric and asymmetric pore profiles.

Before we can simulate periodic flow in both pore geometries, the fluid dy-
namics solver must be established. In prior modelling of this flow, standard
boundary element computational fluid dynamics techniques were utilised [12,
6]. However, the implementation of these methods has some notable drawbacks
when applied specifically to periodic flow in repeated micropore structures.
This includes difficulty in incorporating viscosity dependence, as well as need-
ing to consider many spatial periods in the computational domain [12, 6].
The lattice Boltzmann method (LBM) comes from an alternative framework
that inherently considers fluid viscosity and has easy-to-implement boundary
conditions that allow the computational domain to comprise only one spatial
period [8]. Here, these periodic boundary conditions [8] are extended by
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applying them to an LBM formulation in an axisymmetric coordinate sys-
tem [13] to study flows resulting from the geometries described in Figure 1.
In addition, numerical simulations are obtained using a specifically developed
implementation in Python.

With viscosity dependence and relatively low computational cost, the LBM
allows us to investigate not only the impact of pore shape, but also the
effect that changing the Reynolds number has on the flow. This is done
by measuring velocities and observing patterns in flow recirculation. In
Section 2, relevant fluid dynamics background is presented, along with details
of the LBM. Section 3 contains the process for preparing the simulation via
developing the implementation and converting the physical problem into the
lattice Boltzmann framework. Finally, Sections 4 and 5 discuss the results
and summarise the findings, respectively.

2 Lattice Boltzmann method

2.1 Axisymmetric flow equations

Given the axisymmetry of the micropore strutctures mentioned, we are
effectively simulating a 3D problem in 2D space due to the cross sections
(see Figure 1) being rotationally symmetric. Hence, we consider the axial
direction z and the radial direction r as part of a reduced 3D cylindrical
coordinate system. The macroscopic governing equations are equivalent to
the Navier—Stokes equations and, using Einstein summation, are

ow, o)~ 19p w  vow vy

e Tl YOS, 1
ot Y ox, paxi+vaxj2+r or 2 o (1)
oy, U,
a_x;:_T’ I,JE{Z,T}, (2)

where t is time, p is pressure, p is fluid density, v is kinematic viscosity,
xi and x; represent direction, u; and u; are the velocity components and d;; is
the Kronecker delta function.
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Figure 2: D2Q9 lattice
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2.2 2D lattice Boltzmann method

The LBM simulates the movement of local fluid densities, on a lattice consisting
of cells, via collision and streaming processes, in accordance with a transport
equation. Microscopic particle models, macroscopic variables and mesoscopic
kinetic equations are combined to create a probabilistic model capable of
determining the transport of particle population densities while maintaining
highly accurate results when compared to alternate methods [3]. A generalised
lattice Boltzmann equation takes the form

fo(x + e At t + At) — o (x,t) = Q(x, t), (3)

where f, is the distribution function of particles, x is the position vector,
t is time, At is the time step, e, is the lattice velocity, « is a subscript to
denote direction in the lattice velocity model and Q is the collision operator.
The left-hand side of equation (3) is denoted as the streaming step where
f(x,t) is propagated to f,(x + e At,t + At) and the choice of Q defines the
collision step. A typical lattice velocity model, which we utilize, is the D2Q9
(two dimensions, nine velocities) depicted in Figure 2. The D2Q9 considers
eight outbound velocities to neighbouring cells as well as a rest velocity.

2.3 Axisymmetric lattice Boltzmann method

A standard 2D LBM would not suffice here as the axisymmetry needs to
be taken into account. Zhou proposed the axisymmetric lattice Boltzmann
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equation [13]

At
fa(X + € At t + At) — fo(x, 1) = —To(fo — ) + WeOAL + K—CzeodFi , (4)

where Ax is the lattice spacing, ¢ = Ax/At is the lattice speed, the weighting
according to the D2Q)9 is

w=(4/9,1/9,1/36,1/9,1/36,1/9,1/36,1/9,1/36), (5)
the lattice unit velocity depicted in Figure 2 is defined by

€= C((an)>(])O)>(1)1))(O>1))(_1)1)>(_1>O))(_15_1)5(0)_1)3(1)_1))>

a constant is

the source term is

the force term in tensor form is defined as

_puily  2pvy

T —
' T 2

6iT> ie {Z> T‘}, (9)

and the effective relaxation time is
) T=0 )

To = { <1 n (21712)remm> ) r£0.

The relaxation time T describes the characteristic time a system away from

equilibrium relaxes to equilibrium [3]. The local equilibrium distribution is
defined as [1]

(10)

Al= A=

. Corlly + el 9 (el + eqou)? 3uZ+ul
f(xq:W(xp (1+3 or Tcz Xz Z+§ or C4 Xz Yz _z rCz z , (11)
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where u, and u, are the directional components of the macroscopic velocity
and p is the fluid density. Furthermore, p and u; are determined for every
time step via conservation of mass and momentum, that is,

pz%ﬂx, ui:%;eodﬂx. (12)

Along with t,, the 1/r terms in equations (8) and (9) are also set to zero
when 1 = 0 to avoid singularities. This is possible through careful evaluation
using I'Hopital’s rule. This axisymmetric LBM recovers the Navier—Stokes
equations and has been verified through many numerical simulations [13]. We
reproduced these results as well as additional published results [12] to validate
the implementation used in the simulations discussed in Sections 3 and 4.

3 Simulation details

3.1 Pressure gradient and boundary conditions

Figure 3 depicts the computational domain and boundary conditions of the
simulations. The axisymmetry condition on the centreline streams outbound
flow back inwards with the same axial velocity w, but radial velocity —u,.

We use a no-slip condition for the pore wall in the form of the interpolated
bounce-back condition [9]. At the inlet and outlet of the pore, the generalised
periodic boundary condition is used [8]. This condition streams outbound
flow to the opposite end to simulate repeated geometries on both sides.

Lastly, a pressure gradient is incorporated into the force term from equation (9)
to give the oscillatory flow in the axial direction. Thus, the force term now
becomes

pwiw,  2pviy 27t :
Fi = — . — 2 611' + Po cos (T) 612) 1e {Z’ T‘}, (13)

where py is the maximum amplitude of pressure and T is the period.
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Figure 3: Computational domain, boundary conditions and pressure gradient.

3.2 Parameters

The Reynolds number is defined as

Re = , (14)

where U, is the characteristic velocity and R is the radius of the expansion
region of the pore. Along with the pore geometry, Re is a unique identifier of
the system. We also have the following relationship between viscosity and
relaxation time [13]:

- CZAt(ZGT -1 (15)

Therefore, by setting the parameters mentioned in equations (14) and (15), we
can control the Re of the flow simulation. This grants access to flow regimes
that were previously intractable for other fluid dynamics techniques applied
to this problem.

For all simulations, we assign the values Ax = At =1, Tt = 0.6, R = 20,
with U, allocated a value depending on the desired Re. This parameter set is
consistent with published simulations [13] and is chosen because it balances



4 Results cr7

accuracy and numerical stability, as well as being simple. We set T = 1200
(representing time steps in a period), py = 0.001 and p = poR?/4U.v. This
choice of the average fluid density p maintains consistency with Womersley
flow characteristics [13].

To avoid compressible fluid effects which lead to numerical instability and
inaccuracies, it is required that the Mach number

_ V3UpAt
- Ax
where Uy, is the characteristic velocity in the lattice Boltzmann system, is kept

low (i.e. Ma< 0.3) |9]. Therefore, by setting Ax = At = 1 the requirement is
satisfied by keeping the velocity sufficiently small for all simulations.

Ma (16)

By comparing analytical and numerical solutions for Womersley flow in a
straight tube, it was found that increasing the number of cells and time steps
in the period led to higher accuracy across all tests. It has also been found
in a separate mesh independence study, that simulations of longitudinally
symmetric and asymmetric geometries converge smoothly as mesh resolution
increases. These studies were completed to ensure accuracy of the indepen-
dently developed axisymmetric lattice Boltzmann implementation we use
here.

4 Results

The simulations were run for sufficiently many periods to observe convergent
and repeated fluid behaviour. In total, six simulations were produced: the
longitudinally symmetric and asymmetric pores with Re = 10,100 and 1000.

Across all simulations, the pressure term in equation (13) is at its maximum
positive value py at the start of the period (t/T = 0) and reaches the
maximum negative pressure —p, halfway through the period (t/T = 0.5).
After maximum pressure along the z-axis, a jet of maximum velocity forms
in the constricted regions (inlet and outlet), while velocity is noticeably lower
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Figure 4: Re = 10 (a) symmetric pore, t/T &~ 0.46; (b) symmetric pore,
t/T =~ 0.96; (c) asymmetric pore, t/T =~ 0.46; (d) asymmetric pore, t/T ~
0.96.

in the expansion region. As t/T increases from 0 to 0.5 the pressure inverts,
u, drops and the flow reverses. Areas of zero velocity form which act as
centres of rotation for the flow. Recirculation also occurs near the end of the
period when the pressure term increases back to the maximum. However, the
flow is reversed travelling in the negative axial direction to positive instead of
the opposite case earlier in the period.

We do not present velocity vector fields here. While there are differences in
the velocity vector fields for different pore shapes and Re values, they are
more subtle than the streamline flow visualisations in Figures 4, 5 and 6
which represent uniform /uninterrupted flow along z. This means that breaks
in the streamlines indicate zones of recirculation. The time points for the
plots are chosen to best represent key instances of recirculation across the
different Re systems.
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Figure 5: Re = 100 (a) symmetric pore, t/T ~ 0.40; (b) symmetric pore,
t/T ~ 0.90; (c¢) asymmetric pore, t/T ~ 0.40; (d) asymmetric pore, t/T ~
0.90.

Figure 4 shows streamline plots of periodic flow in symmetric and asymmetric
pores with Re = 10. The colour map describes magnitudes of u scaled by
the maximum ,,,, across both pore profiles for Re = 10. The black arrows
indicate the direction of flow. The time points chosen represent recirculation
in both directions separated by exactly half the period. The symmetric profile
streamlines are approximately symmetric (also exhibited in Figures 5 and 6),
whereas the same cannot be said in the case of the asymmetric profile. Across
both pore shapes for fixed time points, the vortices appear to be slightly
different in size and position. However, the overall trend in the paths of these
recirculation zones are similar; recirculation starts in the expansion region
and separates into two zones while moving toward the centreline.

In Figure 5 for Re = 100 a key distinction between the two pore shapes arises.
For the asymmetric pore in the transition from forward to backwards flow
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Figure 6: Re = 1000 (a) symmetric pore, t/T ~ 0.42; (b) symmetric pore,
t/T ~ 0.92; (c) asymmetric pore, t/T ~ 0.42; (d) asymmetric pore, t/T ~
0.92.

(Figure 5¢), two recirculation zones appear in the expansion region around
the maximum radius. However, in the transition from backwards to forward
flow (Figure 5d), there is only one recirculation zone. For the symmetric pore
profile only one recirculation zone forms at both time points.

Lastly, Figure 6 showcases the recirculation zones for simulations with Re =
1000. Recirculation starts as early as t = 200, which is at least 200 time
steps earlier than the lower Re simulations. The jets of maximum velocity
extend across the whole main channel which gives rise to areas of rotating
flow large enough to occupy the majority of the pore.
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5 Conclusion

To summarise: we simulated oscillatory fluid flow in longitudinally symmet-
ric and asymmetric micropore structures for various Reynolds numbers by
utilising an independently developed and verified axisymmetric LBM imple-
mentation. Not only did we observe recirculation zones of different sizes
and trajectories, but we also noticed the number of vortices change due to
geometric asymmetry (Figure 5). Conversely, the symmetric profile produced
identical recirculation zones for the decline versus rise in axial pressure. This
indicates that asymmetry in the pore allows asymmetry in the flow. It is
precisely this flow asymmetry that allows for particle transport observed in
physical experiments [5]. Additionally, it has been shown experimentally [10]
that the size of recirculation zones increases when Re is increased and his is
consistent with the simulations presented here.

The next step is to produce a more comprehensive simulation by approximating
suspended particle transport within the flow fields.
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