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A rational approximation to the evolution of a
free surface during fluid withdrawal through a

point sink
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Abstract

The time varying flow in which fluid is withdrawn from a reser-
voir through a point sink of variable strength beneath a free surface
is considered. Asymptotic techniques are used to derive an approxi-
mate solution to the flow that is valid at intermediate times, giving
a simple rational approximation to track changes in the free surface
for any temporal variations in the sink strength. Comparisons with
numerical simulations are given, showing that the approximation has
wide applicability.
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1 Introduction

There has been a large amount written about the process of selective with-
drawal from stratified reservoirs. In this process, water draws from the main
water body in a layer: less dense water (warmer, fresh) above the layer is too
buoyant to reach the outlet; and more dense water (colder, salty) below the
layer is too heavy to be pulled up. The thickness of the layer depends on the
strength of the flow rate and the density gradient. Stronger flow results in a
thicker layer, while a stronger density gradient leads to a thinner layer. The
general rules of this if the stratification is continuous and reasonably linear
have been determined through theoretical, numerical, experimental and field
work and are summarized in a number of articles [3, 17, 27, 29].

If the water body consists of layers of different density separated by a thin
interface, then a similar process occurs, but the bounds of the withdrawal
zone coincide with the interfaces between the density layers in the fluid,
and rather than being a continuous variation in withdrawal layer thickness
there are jumps at discrete values of flow rate. Beneath a critical flow rate,
the withdrawn water will all come from the layer adjacent to the outlet,
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whereas above this rate some may come from other layers as well. This critical
transition (often called ‘critical drawdown’) is important in water quality
management of reservoirs and cooling ponds, as there are many situations in
which it is desirable to keep the flow rate below the critical value in order to
withdraw a layer of pollutant or extract salt water without removing potable
supplies (or vice versa). There is again a considerable literature on this
problem, both from a theoretical and an experimental standpoint [2, 11, 12,
20, 24].

Early theoretical work consisted mainly of studies of steady state solutions,
since these are relatively easier to compute. Slow flow solutions that contain
a stagnation point on the surface above the sink exist up to some limiting
value that often depends on the geometry. However, this limiting value does
not always coincide with the critical drawdown flow rate as described above,
and solutions with a downward cusp appear to exist at a somewhat higher
value. Cusped solutions were originally thought to be the critical drawdown
flows, and strong evidence for this was given by Forbes et al. [7, 14, 15]. In
spite of these results, uncertainty remains about the critical flows due to poor
comparison with experiment and the existence of multiple cusped solutions
for certain geometries, as seen in the work of Vanden-Broeck and Keller [26]
and Hocking [12, 13]. Furthermore, what happens in the range of flow rate
between the limiting stagnation point flows and the cusped flows is still not
clear.

In order to investigate this further, work progressed to consider the unsteady
flow situation, allowing the flow to evolve from rest [21, 22, 23, 25, 28, 30].
The effects of neglecting viscosity and a thick interface were considered by
Farrow and Hocking [4]. In all of this work the critical drawdown rates
appeared to depend on the history of the flow. For example, drawdown of
the surface could be initiated by turning on the outlet to a high flow rate
very rapidly, leading to a dip in the surface that immediately entered the
outlet. On the other hand, Stokes et al. [23] showed that a slow, ramped
increase in outflow could often delay the drawdown to higher flow rates than
that at which the rapid drawdown occurred.



2 Problem formulation E19

The study of withdrawal through a more localized outlet such as a point sink
followed a similar historical path. Steady solutions containing a stagnation
point directly above the sink were found up to some limiting value. In fluids
of both unbounded and finite depth, Forbes et al. [6] and Hocking et al. [16]
showed that these solutions reached a limiting form in which a secondary
stagnation ring formed on the surface a short distance from the primary,
central stagnation point. However, no solutions containing the three dimen-
sional equivalent of a cusp have ever been obtained in the axisymmetric cases
considered, in spite of considerable effort (Forbes and Hocking [8]). Simu-
lations of unsteady flows that are capable of accurately examining the flow
close to the limiting cases have only recently become available through the
work of Miloh and Tyvand [19] and Stokes et al. [22], for example.

We consider the evolution of the interface when the withdrawal rate varies but
remains beneath the critical drawdown value. This reflects the true situation
in reservoirs or cooling ponds, in which the withdrawal flow is almost never
steady for very long and varies through the day as the demands on the system
change [17]. A linearised solution is derived and used to develop a simple
rational approximation to the evolution of the interface. A range of flow
scenarios are considered in the following sections and compared with full
simulations, with very encouraging results.

2 Problem formulation

We consider the unsteady, irrotational and axisymmetric flow of an inviscid,
incompressible fluid of infinite depth into a point sink located beneath a free
surface. The sink is initially a depth h in dimensional units beneath the
undisturbed level of the free surface and has strength m(τ), a function of
time τ. This problem was considered numerically by Stokes et al. [22], but
only in the context of determining critical Froude numbers to guarantee a
drawdown of the surface. Here our interests are quite different: we want to
know the behaviour of the surface at low flow rates when subject to small
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variations in sink strength, such as might be experienced in a real water
storage reservoir. For example, if the sink strength varies slowly, does the
free surface move through a sequence of steady states, as conjectured in
earlier work by Stokes et al. [21, 22]?

The consequences of the above assumptions are that we can define a velocity
potential Φ(r̂, ẑ) in polar coordinates, such that v̂ = ∇Φ is the velocity
vector for the flow. The potential satisfies

∇2Φ = 0 , ẑ < N(r̂, τ), (1)

throughout the fluid domain except at the point (r̂, ẑ) = (0, −h), the location
of the singularity representing the point sink, and where ẑ = N(r̂, τ) is the
equation of the free surface. In order to introduce the point sink, the velocity
potential must have the limiting behaviour

Φ→ m

4π

1√
r̂2 + (ẑ+ h)2

as (r̂, ẑ)→ (0, −h). (2)

The conditions on the free surface are given by the dynamic condition of
atmospheric pressure on the free surface, which comes from the Bernoulli
equation,

Φτ +
1

2
(û2 + v̂2) + gN = 0 on ẑ = N(r̂, τ), (3)

and the kinematic condition,

Nτ +Φr̂Nr̂ −Φẑ = 0 on ẑ = N(r̂, τ). (4)

Note that in a reservoir setting, the free surface is more likely to be an
interface between two fluid layers of different density. However, if the upper
fluid is assumed to be stagnant and the interface to be sharp, then Yih [29]
noted that the equations are the same except that gravity g can be replaced
by the reduced gravity g ′ = ∆ρg/ρ0 , where ∆ρ is the density difference
between the layers and ρ0 is some reference density.
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We are interested in the effect of allowing the sink strength m to vary, so we
do not include this in our non-dimensionalisation. Instead, we choose a length
scale h, a time scale

√
h/g, a velocity scale of

√
gh, and a velocity potential

scale of h
√
gh. (A different approach was taken for the two dimensional finite

depth problem by Stokes et al. [23], leading to a rather different formulation:
although equivalent, the approach here is simpler.)

The dimensionless equations are then

∇2φ = 0 , z < η(r, t), (r, z) 6= (0, −1), (5)

subject to

φt +
1

2
(u2 + v2) + η = 0 on z = η(r, t), (6)

and
ηt + φrηr − φz = 0 on y = η(r, t), (7)

with the extra condition that

φ→ F(t)√
r2 + (z+ 1)2

as (r, z)→ (0, −1), t > 0 , (8)

where the Froude number is defined to be the function of time

F(t) =
m(t)

4π
√
gh5

.

The only important quantity is then the Froude number F(t), whose variation
is caused only by changes in the sink strength, m.

3 Weakly non-linear solution

In this section, we assume a small displacement of the interface or free surface,
and find an approximate solution consisting of successive linearizations. Con-
sider the equations (5, 6, 7) with (8). Linearizing about z = 0 , that is, assum-
ing both the Froude number and the surface disturbance are small, we get the
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following cascade of linear problems. Assuming the Froude number is given
by F(t) = εF1(t) and letting φ = εφ1+ε

2φ2+ · · · and η = εη1+ε
2η2+ · · · ,

gives

O(ε) : ∇2φ1 = 0 , −∞ < z < 0 , 0 6 r <∞ , t > 0 , (9)

η1t − φ1z = 0 on z = 0 , (10)

φ1t + η1 = 0 on z = 0 , (11)

φ1(r, z, t)→ F1(t)

(r2 + (z+ 1)2)1/2
as z→ −1 ; (12)

O(ε2) : ∇2φ2 = 0 , −∞ < z < 0 , 0 6 r <∞ , t > 0 , (13)

η2t − φ2z = −φ1rη1r on z = 0 , (14)

φ2t + η2 = −
1

2
(φ21r + φ21z) on z = 0 . (15)

3.1 Leading order

To solve the leading order problem, we choose a particular form for the
solution. Equations (10,11) transform to

φ1tt + φ1z = 0 on z = 0, (16)

as in linear water wave theory (Lamb [18, p.364]), and so we choose

φ1(r, z, t) =
F1(t)

(r2 + (z+ 1)2)1/2
+

F1(t)

(r2 + (z− 1)2)1/2
+

∫∞
0

A(k, t)ekzJ0(kr)dk

(17)
which (by separation of variables) satisfies Laplace’s equation in cylindrical
polar coordinates everywhere below z = 0 , except as (r, z) → (0, −1). The
first two terms of this expression (involving F(t)) represent the sink and an
image above the free surface. These two terms were shown by Forbes et
al. [9] to become the dominant components for flows in which the Froude
number was increased linearly to a final value and then maintained at that
value thereafter.
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Substituting (17) into the condition (16), gives

F ′′1 (t)

(r2 + (z+ 1)2)1/2
+

F ′′1 (t)

(r2 + (z− 1)2)1/2
+

∫∞
0

Att(k, t)ekzJ0(kr)dk

+ F1(t)

[
−(z+ 1)

(r2 + (z+ 1)2)3/2
−

(z− 1)

(r2 + (z− 1)2)3/2

]
+

∫∞
0

kA(k, t)ekzJ0(kr)dk = 0 , (18)

and therefore on z = 0 we have

2F ′′1 (t)

(r2 + 1)1/2
+

∫∞
0

(Att + kA)J0(kr)dk = 0 . (19)

Using the integral (Gradshteyn and Ryshik [10])∫∞
0

e−kJ0(rk)dk = (r2 + 1)−1/2, (20)

we find ∫∞
0

G(k, t)J0(kr)dk = −
2F ′′1 (t)

(r2 + 1)1/2
, (21)

and so
G(k, t) = −2F ′′1 (t)e−k. (22)

Therefore, A(k, t) satisfies

Att + kA = −2F ′′1 (t)e−k, (23)

which depends on the form of F1(t). The solution to this order is therefore

φ1(r, z, t) =
F1(t)

(r2 + (z+ 1)2)1/2
+

F1(t)

(r2 + (z− 1)2)1/2

+

∫∞
0

A∗(k, t)ekzJ0(kr)dk



3 Weakly non-linear solution E24

+

∫∞
0

[
c0(k) cos

√
kt+ d0(k) sin

√
kt
]
ekzJ0(kr)dk

where A∗(k, t) is the particular solution to (23) and the last term represents
the terms due to the initial conditions on the surface.

Equation (11) evaluated on z = 0 provides the leading order expression for
the evolution of the free surface as

η1(r, t) =
−2F ′1(t)

(r2 + 1)1/2
−

∫∞
0

A∗t (k, t)J0(kr)dk (24)

+

∫∞
0

[
c0(k) sin

√
kt− d0(k) cos

√
kt
]
J0(kr)k

1/2 dk

The forms of c0(k) and d0(k) are determined by the initial conditions on
z = 0 for both φ1 and η1. For example, the standard starting conditions
φ1(r, 0, 0) = 0 and η1(r, 0) = 0 give

φ1(r, 0, 0) = 0 =
2F1(0)

(r2 + 1)1/2
+

∫∞
0

A∗(k, 0)J0(kr)dk+

∫∞
0

c0(k)J0(kr)dk

η1(r, 0) = 0 =
−2F ′1(0)

(r2 + 1)1/2
−

∫∞
0

A∗t (k, 0)J0(kr)dk−

∫∞
0

d0(k)J0(kr)dk,

giving c0(k) = −2F(0)e−k and d0(k) = −2F1(0)e
−kk−1/2. The method of

stationary phase shows that these terms decay to zero as t → ∞ , and in-
tegration by parts shows that this occurs like O(t−2). Thus these terms are
transient (and decay quite quickly).

The particular solution for (23) can easily be shown to be

A∗(k, t) =
2e−k

√
k

∫ t
0

F ′′1 (ξ) sin
[√
k(ξ− t)

]
dξ (25)

which when substituted into (24) gives the shape of the interface to this
order. In general, this calculation becomes intractable.
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However, we assume that the sink strength function is F(t) = εF1(t) = βt =

εβ1t , so that the increase in withdrawal strength is linear with time, so that

φ1(r, z, t) =
2β1t

(r2 + 1)1/2
+

∫∞
0

[
c0(k) cos

√
kt+ d0(k) sin

√
kt
]
ekzJ0(kr)dk

(26)
and

η1(r, t) =
−2β1

(r2 + 1)1/2
+

∫∞
0

[
c0(k) sin

√
kt− d0(k) cos

√
kt
]
J0(kr)k

1/2 dk

(27)
since F ′′1 (t) = 0 and therefore A∗(k, t) is identically zero. Note that this pro-
vides what amounts to a ‘steady’ solution, in the sense that if the transient
component due to the initial conditions dies out quickly the first order so-
lution gives a surface that maintains a constant dip. Simulations (see later)
demonstrate the surface remains apparently motionless for some time even
as the flow rate increases.

3.2 Second order solutions

Proceeding as before to the second order, the velocity potential takes the
form

φ2(r, z, t) =

∫∞
0

A1(k, t)ekzJ0(kr)dk (28)

which satisfies Laplace’s equation. On substitution of the known leading
order terms into equations (14,15), we find

φ2tt + φ2z = −8
F1(t)F

′
1(t)r

2

(r2 + 1)3
. (29)

Again substituting z = 0 gives∫∞
0

(A1tt + kA1)J0(kr)dk = −8
F1(t)F

′
1(t)r

2

(r2 + 1)3
. (30)
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The solution to this is A1(k, t) = A1CF(k, t) +A∗1(k, t) where A∗1(k, t) is the
particular solution to A1tt + kA1 = g1(k, t) where g1(k, t) satisfies∫∞

0

g1(k, t)J0(kr)dk = −8
F1(t)F

′
1(t)r

2

(r2 + 1)3
. (31)

After some work, one obtains

g1(k, t) = −8F1(t)F
′
1(t)k

1/2H

{
r3/2

(r2 + 1)3

}
(32)

where H{} denotes the Hankel transform [10].

Continuing we obtain

k−1/2g1(k, t) = −F1(t)F
′
1(t)k

5/2K0(k)

where K0(k) is the modified Bessel function [1], and consequently, A∗1 satisfies

A1tt + kA1 = −F1F
′
1k
3K0(k). (33)

Again, taking the case of a linear ramping of withdrawal rate, F(t) = εF1(t) =

βt = εβ1t , to get the solution A∗1 = −β21k
2K0(k)t , and assuming that non-

trivial initial conditions are of leading order only we find

φ2(r, z, t) = −β21t

∫∞
0

k2ekzJ0(kr)dk ,

and therefore,
φ2(r, 0, t) = −2β21tr(r

2 + 1)−2.

Substituting back into the second order surface condition then gives

η2(r, t) = −φ2t −
1

2
φ21r =

2β21
(r2 + 1)3

(r3 + r− r2t2).

Thus, the solution for η(r, t) to second order is

η(r, t) = εη1(r, t) + ε2η2(r, t) =
−2εβ1

(r2 + 1)1/2
+

2ε2β21
(r2 + 1)3

(r3 + r− r2t2)



3 Weakly non-linear solution E27

and so we have

η(r, t) =
−2β

(r2 + 1)1/2
+

2β2

(r2 + 1)3
(r3 + r− r2t2). (34)

This last equation is usefully expressed in terms of F(t) as

η(r, t) =
−2F ′(t)

(r2 + 1)1/2
−
2r2F(t)2

(r2 + 1)3
+
2F ′(t)2(r3 + r)

(r2 + 1)3
. (35)

3.3 Comments

The solution (34) represents a very simple form for the evolution of the free
surface provided the form of F(t) is linear and the surface displacement is
small. As time increases the displacement increases and the solution loses its
validity. However, agreement with simulations is very good.

This solution holds for the case of a linear increase in the sink strength. It
shows a significant component that is steady if there is a linear ramping of
the inflow rate, as it involves the first derivative of the time dependent Froude
number. A dip forms that is proportional in size to the rate of change of F(t)
with time, corresponding to the first term in both (34) and (35). The final
term in (35) likewise represents a constant term, albeit one of much smaller
magnitude than the first.

Of course this solution only has validity for the case in which F(t) = βt for
small β, and then only for relatively small time. The second term becomes
of similar order to the first when t ∼ O(β−1/2), suggesting an upper bound
on the temporal validity. However, note that the middle term in (35) is
the asymptotic (to second order in F) stagnation point steady state surface
that would evolve in response to a constant value of F [5]; this suggests that
providing F(t) is not too large, a component having the form of a stagnation
point steady flow will play a role in the free surface profile.
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4 Rational approximation

Our goal in this work is to obtain a rational function that will provide a
reasonable approximation to the behaviour of the surface as the inflow rate
varies in some general manner. The solution obtained above only applies
for a linear increase (or decrease) in Froude number, or flow rate. However,
if the second derivative of the small Froude number F(t) is always small in
comparison to F(t), then locally, F(t) looks like a linear ramp-up (or down),
and the approximation continues to work well.

Approximating F(t) by a piecewise linear function, if the slopes of the succes-
sive pieces are close enough to one-another, then the ‘local transient phases’
will be extremely short lived. Informally taking the limit as the intervals of
constant slope approach zero in length, the equations for the surface shape
are modified by replacing βt by the more general form F(t). Using equa-
tion (6) to leading order for general F(t), we obtain

η = −φt −
1

2
(u2 + v2) (36)

≈ −F ′(t)φ0(r, 0) −
1

2
F(t)2φ0r(r, 0)

2 (37)

= −F ′(t)y1(r) − F(t)2y2(r), (38)

where

y1(r) = φ0(r, 0) =
2

(r2 + 1)1/2
(39)

and

y2(r) = φ0r(r, 0)
2/2 =

2r2

(r2 + 1)3
. (40)

The term −F ′(t)y1(r) is a dip (or bulge if F ′(t) < 0) centred on r = 0 and pro-
portional in size to the rate of change of F(t), whereas the term −F(t)2y2(r)

is the familiar asymptotic (to second order in F) stagnation point steady state
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surface that would evolve at the current value of F. So both terms have some
physical interpretation in the context of the problem.

This form omits the terms of order F ′′(t) that arise in the above calculations
but provided these are small then we might expect the solution to be a rea-
sonable approximation to the unsteady behaviour for a general F(t). For the
case in which F(t) = βt , discussed previously, only the negligible non-time
dependent order F ′(t)2 term appearing in Equation (35) is absent, suggesting
that the current rational approximation can indeed be viewed as a piecewise
linear application of the results derived for the linear ramp-up.

In what follows, we compare this rational approximation with a full simula-
tion of the evolution of the free surface.

5 Numerical solution

A method for the numerical solution of the time dependent problem was de-
scribed in the recent article by Stokes et al. [22]. However, for completeness,
we briefly summarize the method. The full equations are standard for un-
steady free-surface hydrodynamics, that is (5), (6), (7) with the addition of
the singularity representing the point sink flow, (8).

This system is solved by placing ring source/sink singularities (that satisfy
Laplace’s equation within the fluid) just above a discrete representation of
the interface at zj = ηj(rj) + δj , j = 1, 2, . . . ,N , where δj, j = 1, 2, 3, . . . ,
are determined to provide optimal performance [22]. The strengths of these
source/sink singularities are allowed to evolve in time in order to satisfy the
flow conditions. In what follows, initial conditions are required to get started,
and the choice made here is

φ(r, z, 0) = 0 and η(r, 0) = 0 (41)

in keeping with other work on this problem [9, e.g.]. This represents a flow
initiated from a quiescent situation.
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5.1 Results

Full simulations of the flow in which the sink is turned on and varied in
strength according to various forms of F(t) are generated, and compared
with the rational approximation given above. The results of linear ramping,
an exponential levelling off, a linear ramping followed by a ‘jump’ to a cubic
increase, and sinusoidal oscillations in flow rate are shown in accompanying
animations (see supplementary files at the web site). In each case the blue
line is the full simulation and the red line is the rational approximation for
the same flow.

In the first animation1 the Froude number

F(t) = t/200 (42)

is increased linearly from zero. The rational approximation (red) appears
to be almost in a steady state configuration while the transients of the full
simulation (blue) evolve until the two interfaces match, after which both
begin to travel downward as the full simulation approaches drawdown (the
rational approximation cannot give this outcome). In the full simulation the
transient phase dies out very quickly, after which the rational approximation
is excellent.

The second animation2 shows the situation

F(t) = 0.02[1− exp(−t/25)] (43)

Again the solutions match exceedingly well once the initial transient phase
has passed. The dip forms as above, and as suggested by the asymptotic
approach, it is of the size predicted by the first derivative of F(t). Therefore,

1http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/
downloadSuppFile/1717/7562; this and the other animations usually can be viewed
within a web browser.

2http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/
downloadSuppFile/1717/7564

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/1717/7562
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/1717/7562
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/1717/7564
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/1717/7564


5 Numerical solution E31

as the sink strength levels off, the size of the dip decreases. This exemplifies
again how treating the simulation as a sequence of linear segments is reason-
able. After this initial phase, the quadratic term begins to play a role and
as the value of F(t)→ 0.02 as t→∞ , both the simulation and the rational
approximation approach the steady state solution (shown in green) for the
value F = 0.02 [5]. The value of Froude number in this simulation remains
well below the critical drawdown value for all time.

The third animation3 reveals the behaviour when there is a change in the
form of F(t). In this third example, the linear ramp-up as discussed earlier
is applied from t = 0 to t = 20 , at which point F = 0.02 . After that, a
cubic function is added on, shifted to start at t = 20 so that F(t) is twice
differentiable for all t > 0 . Thus

F(t) = t/1000+H20(t)(t− 20)3/400000 (44)

where Ha(t) is the Heaviside step function which is 0 for t 6 a and 1 for
t > a . The steady component of the rational approximation is quickly joined
by the numerical solution during the linear phase, and then, as the influence
of the cubic component becomes apparent, the surface dips downward. The
important point here is that there is no apparent transient phase in moving
from the linear to the cubic ramp-up (as there is no ‘start-up’ from quiescence
to pass through), and moreover the match between the numerics and our
approximation is excellent for much of the cubic phase as well, highlighting
the relevance of the approximation providing F ′′(t) is small.

Finally, we consider a case for which the rational approximation might be
expected to be less applicable, given the form of F(t). The choice of flow rate
for this animation4 was

F(t) =
1

20

[
1− cos

(
2πt

50

)]
. (45)

3http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/
downloadSuppFile/1717/7565

4http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/
downloadSuppFile/1717/7566

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/1717/7565
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/1717/7565
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/1717/7566
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/1717/7566
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Sometimes the sink is actually pumping outward, that is behaves like a source
(all approximations are still valid for negative sink strength values), and yet
again the rational approximation is surprisingly good. The phase is exactly
correct and the amplitude is slightly underestimated.

In all of the animations the rational approximation does a very good job
of resolving the shape of the free surface once the initial transients due to
turning on the sink have passed, providing F ′′(t) remains reasonably small.
In almost all reservoir situations, this is a valid assumption.

6 Conclusions

A rational approximation is provided via a perturbation expansion to the
problem of a point sink in a fluid of infinite depth that is varying in strength.
The process described in this article will not work in two dimensions with a
line sink in a fluid of infinite depth because of the logarithmic nature of the
potential function: the same analysis can be attempted but does not give
physically meaningful results (one obtains a logarithmic η1 term leading to
an unbounded elevation in the far field).

In three dimensions, however, the rational function approximation compares
very well with the full simulation history of the flow at intermediate times,
even if the flow is changed quite quickly. The apparent region of validity is
much greater than that expected from the restrictions on the calculations,
and provides a reasonable representation of the flow variations except when
the critical drawdown point is reached. However, this is a highly non-linear
process and one would not expect the linear theory to predict this event.
Bearing in mind that even the full simulations are an approximation to real
flows, the results suggest that in the ‘field’ case, where the flow rate is vary-
ing constantly, the rational function model is a very good indicator of the
behaviour of the interface of such a two layer fluid. This is expected to be of
use in the practical management and monitoring of reservoir operation.
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