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A local projection stabilisation for
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Abstract

We consider a local projection stabilisation based on biorthogonal
systems and adaptive refinement for convection-diffusion-reaction dif-
ferential equations. The local projection stabilisation and adaptive
finite element method are both based on a biorthogonal system. We
investigate the numerical efficiency of the approach when compared to
the standard finite element method. Numerical examples are presented
to demonstrate the performance of the approach.
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1 Introduction
The applications of convection-diffusion-reaction differential equations are vast
in the areas of science and engineering. However, when attempting to apply
the standard finite element method to these equations, a stable approximation
solution is not obtained due to spurious modes [9, 14]. This suggests that for
the finite element method to be a viable approach, a stabilisation technique
must be applied to stop the formation of spurious modes in the approximation.
To this end, a wide variety of stabilisation techniques have been developed [1,
2, 13, 14].

For the advection dominated problem, the spurious modes come primarily
from boundary and internal layers present in the exact solution to the equation.
The development of stabilisation techniques to stop the formation of spurious
modes when using the standard finite element method has been a popular area
of research. Some of the methods of stabilisation that have been developed
include the streamline-diffusion methods, least square methods, residual-
free bubbles, local projection schemes, continuous interior penalty methods,
discontinuous Galerkin methods, and the Galerkin least-square method [10,
14]. In this article we are focusing on a new adaptive finite element technique,
which uses a local projection scheme based on a biorthogonal system.

Adaptive finite element methods have also been applied to the reaction-
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diffusion-convection problem, but previously the focus has been on grid
refinements for the standard finite element method rather than the use of
stabilisation in conjunction with the adaptive mesh. The techniques that
have been used with adaptive techniques are the streamline diffusion finite
element method [15] and the multilevel homotopic adaptive finite element
method [6].

Adaptive finite element schemes follow four steps that repeat until a stopping
criterion is satisfied (as shown below).

solve estimate mark refine

Let the domain Ω ⊂ R2 be bounded by a polygonal boundary ∂Ω, where
∂Ω is divided into two disjoint parts ΓD and ΓN. We consider the convection-
diffusion-reaction equation

−ε∆u+ b · ∇u+ cu = f in Ω,
u = gD on ΓD , (1)

ε
∂u

∂nnn
= gN on ΓN ,

for given functions b ∈
[
W1,∞ (Ω)

]2, c ∈ L∞ (Ω) , gN ∈ L2 (ΓN) , gD ∈
H1/2 (ΓD) and f ∈ L2 (Ω) satisfying

σ := c− 1
2
∇ · b > σ0 > 0 , (2)

for constants σ0 and 0 < ε� 1 . Here n is the unit outward normal vector
of ΓN.

The purpose of this article is to explore the viability of local projection sta-
bilisation using a biorthogonal system combined with an adaptive refinement
technique, and compare it numerically with the uniformly refined stabilised
finite element method.
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To apply the finite element method we must consider the weak formulation
of (1). Let V0 :=

{
v ∈ H1 (Ω) : v |ΓD= 0

}
and VD :=

{
v ∈ H1 (Ω) : v |ΓD= gD

}
.

The weak formulation is to find u ∈ VD such that

a (u, v) = ` (v) , v ∈ V0 , (3)

with

a (u, v) = ε

∫
Ω

∇u · ∇v dx+
∫
Ω

[(b · ∇u) v+ cuv]dx

and ` (v) =

∫
Ω

fv dx+

∫
ΓN

gNv ds .

Assuming that the inflow boundary is part of the Dirichlet boundary ΓD; that
is

{x ∈ ∂Ω : b · n < 0} ⊂ ΓD , (4)

the condition (2) guarantees the coercivity of the bilinear form a(·, ·) on V0.
Hence the boundary value problem (3) has a unique solution by the Lax–
Milgram Lemma [4, 8].

2 Finite element method

2.1 Finite element discretisation

We consider a shape regular triangulation Th of the polygonal domain Ω,
where Th consists of triangles. The diameter of an element T ∈ Th is denoted
by hT . Let a reference triangle be defined as

T̂ =
{
x ∈ R2 : x1, x2 > 0 , and x1 + x2 < 1

}
.

The linear finite element space based on the triangles Th is then given by [3,
4]

Vh :=
{
vh ∈ H1 (Ω) : vh |T∈ P1 (T) , T ∈ Th

}
, V0,h := Vh ∩ V0 , (5)
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where P1 (T) is the set of all linear polynomials on T . This then allows us to
write our discretised formulation of (3) as finding uh ∈ Vh with uh |ΓD= gD,h ,
which is a projection of gD onto Vh, such that

a (uh, vh) = ` (vh) , vh ∈ V0,h . (6)

2.2 Local projection stabilisation

Let the basis functions of Vh with respect to the mesh Th be the set B1 :=
{η1, . . . , ηn} . This is now used to construct a second basis B2 := {ψ1, . . . , ψn}

which satisfies the biorthogonality condition∫
Ω

ηiψj dx = cjδi,j , cj 6= 0 , 1 6 i, j 6 n , (7)

where δi,j is the Kronecker delta function, and cj is a scaling factor that is
chosen to be proportional to the area | suppηj|. Basis B2 allows us to define
another finite element space Qh := span {B2} .

Using this new space we now construct two quasi-projection operators: Πh :
L2 (Ω) 7→ Vh and Π∗h : L2 (Ω) 7→ Qh defined by∫

Ω

Πhvψh dx =

∫
Ω

vψh dx , v ∈ L2 (Ω) , ψh ∈ Qh , (8)

and ∫
Ω

Π∗hvvh dx =

∫
Ω

vvh dx , v ∈ L2 (Ω) , vh ∈ Vh . (9)

An analysis on the properties of the quasi-projection operators is given by
Lamichhane [11]. The projection operator Π∗h is required to implement the
stabilisation of the standard finite element method. The stabilisation term

S (uh, vh) =
∑
T∈Th

∫
T

hT [b · ∇uh − Π∗h (b · ∇uh)] [b · ∇vh − Π∗h (b · ∇vh)]dx

(10)
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is added to the left hand side of (6) to stabilise the formulation by finding
uh ∈ Vh with uh |ΓD= gD,h such that for vh ∈ V0,h :

ε

∫
Ω

∇uh · ∇vh dx+
∫
Ω

[(b · ∇uh) + cuh] vh dx+ S (uh, vh) = ` (vh) .

This is written in a similar form to (3) by first defining the bilinear form

A (uh, vh) = ε

∫
Ω

∇uh · ∇vh dx+
∫
Ω

[(b · ∇uh) + cuh] vh dx+ S (uh, vh) .

Then our problem is written as finding uh ∈ Vh with uh |ΓD= gD,h such that

A (uh, vh) = ` (vh) , vh ∈ V0,h . (11)

The norm used for error analysis is the lp-norm:

‖v‖LP =

ε |v|21,Ω + σ0 ‖v‖20,Ω + S (v, v) +
1

2

∑
e∈ΓhN

∫
e

|b · n| v2 ds

1/2

,

where ΓhN is the set of all Neumann edges. This allows us to use the following
theorem.

Theorem 1. Let u ∈ H2 (Ω) and uh ∈ Vh be the solutions of (3) and (6),
respectively. Then there exists a constant C independent of the mesh-size h
such that the following a priori error estimate holds true:

‖u− uh‖LP 6 C

(∑
T∈Th

(
ε+ hω(T)

)
h2ω(T) ‖u‖

2
2,ω(T)

) 1
2

, (12)

where ω (T) is the patch of elements touching T and hω(T) is the diameter
of ω (T).

The proof of this theorem is given by Lamichhane and Shaw-Carmody [12].
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3 Adaptivity
When applying the estimation step, a posteriori error estimator needs to
be chosen as some measure of the estimated error of the solution over each
element. This is used to inform the marking step. Let T be a triangulation
of Ω. We define the global error estimator

η (T; v) =

(∑
T∈T

ηT (T; v)
2

)1/2
for all v ∈ Vh ,

where the localised estimation for each T ∈ T satisfies

η (T; ·) : Vh 7→ [0,∞) .

Here we use the local estimator

ηT (T; v) =

(
hT

∫
T

[b · ∇v− Π∗h (b · ∇v])
2
dx

)1/2
, (13)

which is motivated by the stabilisation term.

The results of applying the local error estimator are used to inform the
marking step. The Dörfler marking scheme is a popular strategy in adaptive
finite element to determine which elements are to be marked for refinement.

The marking scheme is to select M, a subset of T, with minimal cardinality
such that

θη (T;uh)
2 6
∑
T∈M

ηT (T;uh)
2 (14)

holds true for some fixed parameter 0 < θ < 1 . The set M represents
which elements are marked to be refined because they constitute the higher
proportion of the estimated error. If θ = 0 then no elements will be chosen,
and if θ = 1 then all of the elements, except those with ηT (T;uh) = 0 , will
be chosen.
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(a) Red (b) Green

(c) Blue (d) nvb

Figure 1: Examples of a single refinement using each of the named refinement
types.

3.1 Refinement schemes

The refinement step of the adaptive algorithm is broken down into two parts:
the refining of the elements that have been marked, and the closure of the
mesh. The closure step involves checking each element of the mesh for hanging
nodes, which for linear triangles are nodes that lie on the boundaries of the
element that are not the vertices that define the triangle. If an element
is found to have a hanging node, then it is marked for further refinement
according to the refinement scheme. These two steps alternate until the
closure step finds no elements that need to be marked.

Red Refinement

Red refinement is where a triangle is split into four sub-triangles. This is
traditionally performed either by placing nodes at the midpoints of the edges
and connecting the midpoint edges creating four elements, demonstrated
in the left picture of Figure 1a, or by applying a Green refinement to the
original element and then applying a further Green refinement to the resultant
triangles, shown in the right picture of Figure 1a. A Green refinement is
where a triangle is split into two sub-triangles by connecting the midpoint of
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an edge of a triangle to its opposite vertex. This Green refinement is shown
in Figure 1b, where the selected edge is the bottom edge of the triangle.
When Red refinement is used on all of the elements, then this is equivalent to
uniform refinement, which we use as our baseline for comparison.

Red-Green (rg) Refinement

Red-Green refinement is where the marked elements have a Red refinement
applied to them and then a closure cycle occurs to deal with all of the hanging
nodes. The closure cycle occurs by marking all elements that contain a
hanging node. If an element has more than one edge with a hanging node,
then it will have a Red refinement applied to it. Once all Red refinements are
completed and no new Red refinements are required, then the elements with
hanging nodes have Green refinements, shown in Figure 1b, applied to them
to resolve the hanging node. There is a potential problem with the Green
refinement component, where the child triangles can become degenerate since
one of the angles of the parent is guaranteed to be cut in half.

Red-Green-Blue (rgb) Refinement

The implementation of the Red-Green-Blue refinement is more complicated
than the Red-Green or Red refinement methods because it does not have
a clear decision path for how to apply the Blue refinement, which has left
and right refinements as shown in Figure 1c, and thus a choice has to be
made while implementing the method. Clarity can be gained at the price of
additional overhead by having one of the edges of the triangle denoted as
the reference edge. This reference edge then dictates the orientation of the
triangle. One such implementation of this method is demonstrated by Funken
and Schmidt [7], which we adopt here.

Newest-Vertex-Bisection (nvb) Refinement

Newest-Vertex-Bisection is a refinement method that has a vertex of each
triangle which is denoted as the newest vertex. When the triangle is marked
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for refinement the new edge which is constructed to split the triangle is drawn
between the newest vertex and the midpoint of the edge opposite the newest
vertex. This is shown in Figure 1d where the vertex with the black dot
denotes the newest vertex. The newest vertex information can be stored as
easily in the element information as the first node which defines the triangle.
This method has an advantage over the other refinement methods since it is
known to be compatible with the axioms of adaptivity [5], which guarantee
quasi-optimal convergence if satisfied. This is not true of Red-Green-Blue
refinement.

4 Numerical results

4.1 Example 1

Here, we consider the pde (1) with coefficients ε = 10−8 , b = (2, 3) , c = 2 ,
and where Ω = (0, 1)

2 , ΓD = ∂Ω , ΓN = ∅ for which the exact solution is

u (x, y) = 16x (1− x)y (1− y)

×

1
2
+

tan−1
(
200

[
1
42

−
(
x− 1

2

)2
−
(
y− 1

2

)2])
π

 .
This pde contains a transition layer on a circle in the domain with radius 0.25
and centre (0.5, 0.5) .

Here we compare the different refinement schemes over various values of θ
to investigate the convergence of each method for their individual marking
regiments. For each test we use the uniform refinement as the benchmark for
comparison, which is independent of θ.

For θ = 0.25, 0.5, 0.75, the adaptive refinement schemes were run for 70,
30 and 20 iterations, respectively, to obtain a similar number of degrees of
freedom used for eight iterations of uniform refinement. Figure 2 shows that
all of the adaptive refinements perform better than the uniform refinement.
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102 104 106

Degrees of Freedom

10-1

100

101

H
1
 E

rr
or

Uniform
RG
RGB
NVB

(h) H1 error, θ = 0.75

102 104 106

Degrees of Freedom

10-3

10-2

10-1

100

101

LP
 E

rr
or

Uniform
RG
RGB
NVB

(i) lp error, θ = 0.75

Figure 2: The L2, H1 and lp error convergence comparison over Uniform, rg,
rgb and nvb refinement regimes for Example 1 with θ = 0.25, 0.5, 0.75 for
each row, respectively.
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For each value of θ the Red-Green refinement scheme performs better than
the Red-Green-Blue and Newest-Vertex-Bisection schemes, which have similar
errors.

4.2 Example 2

Here, we consider the pde (1) with coefficients ε = 10−9, b = (1, 0) , c = 1 ,
and where Ω = (0, 1)

2 , ΓD = ∂Ω , ΓN = ∅ for which the exact solution is

u (x, y) =
xy

2
(1− x) (1− y)

[
1− tanh

(
α− x

γ

)]
.

In this problem the parameters α and γ control the location and thickness
of the interior layer. Here α = 0.5 and γ = 0.0005 . The adaptive method
works better where the transition layer is quite sharp.

For θ = 0.25, 0.5, 0.75, the adaptive refinement schemes are run for 70,
30 and 20 iterations, respectively. Figure 3 shows that all of the adaptive
refinements perform better than the uniform refinement which represents
the performance of the stabilised standard finite element method. For each
value of θ the Red-Green refinement scheme performs better than the Red-
Green-Blue and Newest-Vertex-Bisection schemes, which have similar errors.
However, in this example the Red-Green scheme suffers from oscillation in the
error, from which the Red-Green-Blue and Newest-Vertex-Bisection schemes
do not suffer. This shows that while the error is decreasing overall for the
Red-Green scheme, there is no guarantee that the error would be decreasing
from one iteration to the next. However, the oscillation appears to be larger
for smaller values of θ. Further investigation of this property is warranted in
future research.
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