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Connectivity aware simulated annealing kernel
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Abstract

A vital input for steel manufacture is a coal-derived solid fuel called
coke. Digital reconstructions and simulations of coke are valuable
tools to analyse and test coke properties. We implement biased voxel
iteration into a simulated annealing method via a kernel convolution
to reduce the number of iterations required to generate a digital coke
microstructure. We demonstrate that voxel connectivity assumptions
impact the number of iterations and reduce the normalised computation
time required to generate a digital microstructure by as much as 70%.
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1 Introduction

Metallurgical coke is a porous, high strength carbon material manufactured
by heating coal without oxygen. Coke is a key input in a blast furnace, when
manufacturing iron from iron ore. Inside a blast furnace, coke serves as a fuel,
provides a carbon source to reduce iron oxide and acts as permeable support
for the iron ore loaded into the furnace. Coke strength is known to have a
significant impact on the performance of coke inside the blast furnace, and
industry-standard metrics via tumble drum tests are a standard measure [2].
Coke microstructure features impact its mechanical strength, and hence
understanding optimal coke microstructure is a vital tool to manufacture
high-performance coke and to increase the efficiency of the iron production
process [8]. Quantitative analysis and representation of microstructure are
common tools used across various disciplines to understand material structure-
property links [11].

The manufacture of coke is an expensive, large scale operation where batches
of coke are produced in substantial quantities. It is favourable to explore
the material properties of coke without the need for costly manufacture and
imaging. An effective, statistically relevant structure generation procedure
provides accurate and representative computational models for subsequent
analysis of the material’s macroscopic properties, and we seek to develop such
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a procedure for coke [6].

Torquato et al. [14] provided a framework to generate new structures with
spatial statistics corresponding to a measured sample. This technique, com-
monly referred to as the Yeong—Torquato (Y-T) method, applies a simulated
annealing (SA) approach to minimise an energy measure between statistics cor-
responding to the input and generated structures. In this method, a random
binary three-dimensional structure is generated with the appropriate portions
of ones and zeros corresponding to the two phases of the material. Two
voxels are randomly selected and swapped at each iteration to maintain the
appropriate phase volume fractions and alter the structure. This algorithm
has been used successfully across various fields and enables the inclusion of
a wide range of different spatial statistics. The Y-T procedure has shown
reliability and accuracy across many materials [4].

A drawback of the Y-T method is the computational complexity of applying
SA to a large 3D cube structure with side length N, containing N3 voxels.
In the Y-T method, the expected number of iterations required grows at
least as fast as O(N?3), since each voxel may need to be changed multiple
times. Evaluating a relevant objective function adds further computation
over the entire structure, and the total complexity of the algorithm is approx-
imately O(N%*3) [7].

Several different implementations of the Y-T procedure have been devised
to improve efficiency across different applications [9]. Biased voxel selection
schemes effectively accelerate the Y-T method by reducing the number of
voxels that can be selected at a given iteration, thereby reducing the number
of iterations and overall computation time to generate a structure [4, 10].

This article presents a biased voxel selection method for digital coke microstruc-
ture simulation. We utilise kernel filtering techniques from image processing
to implement various voxel connectivity assumptions on the microstructure
and reduce the number of iterations required.

Section 2 defines the two-point correlation function and details the Y-T simu-
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lated annealing approach for microstructure generation. Section 3 introduces
kernel-based image filtering, voxel connectivity, and biased iteration schemes.
Section 4 presents some preliminary results from coke microstructure gen-
eration across 50° and 80% voxel structures and 6, 18 and 26 connectivity
assumptions. Section 5 discusses the implications of these results and future
directions.

2 Microstructure generation via simulated
annealing

The two-point correlation function is a spatial statistic that gives the condi-
tional probability that two voxels are in the same phase. It is frequently used
to describe the microstructure of various materials and provides information
on the large scale features [12].

We consider A € RN*N*N t6 be a three-dimensional digital representation of
a coke microstructure from a micro-CT image with N € Z*. Usually, a three-
dimensional micro-CT image comprises N images of N x N two-dimensional
images. Voxel positions are indexed by j, k,1 for each axis. We consider
complete segregation of the components into two distinct phases:

1. Q;—solid phase voxels;
2. Q,—pore phase voxels.

Greyscale image values are converted to binary using an Otsu segmentation
applied to each of the N two-dimensional images, where solid and pore phase
voxels in A are given the values 1 and 0, respectively. The phase volume
fraction for Q); is defined as ®@;. Hence the solid and pore phases are given by

N N
1
Oy==5> Y > Ay, Or=1-0;. (1)

The two-point correlation function s}(r) is a microstructure descriptor that
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gives the conditional probability that the two points on the ends of a vector r
are in the same phase ®;. The two-point correlation function is known to

have the properties . .
s5(0) = @i, s5(c0) = @7, (2)

for ¢; the volume fraction as outlined in (1).

To compute the two-point correlation function on a digital microstructure A,
we define a vector
r:=em + en; + es3nsz,

where each ey is a unit basis vector for R® and n;, n,, nz are positive integers
limited by the dimensions of the image N. Hence r is a vector in A with
end points {A; 1, Ajin, k+na,l4ns ) at which the phase value is evaluated. We
consider periodic boundary conditions on A for r and hence for Q);:

N N
1
s5(1) = INE Z Z Z Aj WA iny keana,lims (3)

i=1 k=1 1=1

which translates r throughout A. Hence, we consider all possible pairs of
voxels of phase (); separated by the chosen vector r.

Fullwood et al. 3| developed a discrete Fast Fourier Transform (FFT) method
to compute s}(r) on A:

s3(r) = F N (F(A)F(A), (4)

where F, 3 and T~ are the FFT, complex conjugate of the FFT, and the inverse
FFT, respectively. This approach efficiently computes the two-point correlation
function for all vectors r and hence produces the three-dimensional two-point
correlation function for A. The FFT method in (4) also implicitly imposes
periodic boundary conditions on the structure unless further consideration
is made. The two-point correlation function is radially averaged, so that
generated structures are similar on average but may differ at the voxel level.
This radial averaging is important for generating novel microstructures and
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not identical structures [3]. We use the notation s}(r) to denote the radially
averaged two-point correlation function.

Microstructure generation via SA seeks to generate a simulated three-dimensional
microstructure from a random binary initialisation with correct volume frac-
tions. This binary initialisation becomes the iterated structure that is updated
at each iteration. The method is formulated as an ‘energy minimisation
method’, where the energy for our problem is defined as

E=[si(r)—&(r)], (5)

for s}(r) and $}(r), the radially averaged target and iterated structure two-
point correlation functions for Q.

To reduce the energy, two voxels are chosen randomly within the iterated
structure, and the voxel values at these positions are reversed (voxel value 1
becomes voxel value 0 and vice versa), giving a new microstructure. The
energy b is evaluated on this new microstructure, and the structure is either
accepted or rejected based on a probability value determined by the current
iteration ‘temperature’ Ty, which is reduced according to a predetermined
cooling schedule [13]. For the comparison of the different connectivity methods,
we utilise a consistent initial temperature Ty and step size 0t to reduce the
variability in annealing time between the different methods. The cooling
schedule for all methods is

{Tk—ét if Ty, > 5t
Ty =

6
5t if T, = ot (6)

with k € {0,1,2,...} and 8t < 1. Hence, the probability of accepting a new

microstructure is
E - F—n W
Paccept := min {1,exp (M) } , (7)
Ty

and so the algorithm only accepts a reduction in the energy after a number
of iterations determined by the choice of Ty and &t.
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If the microstructure is accepted, then it becomes the new target for voxels
phase reversal. If the microstructure is rejected, then we return to the
microstructure from the previous iteration, and the process is repeated by
selecting two different random voxels.

3 Connectivity and image kernels

In the context of image processing, a kernel or convolution matrix can be
used for blurring and edge detection. This is achieved by taking a convolution
of the kernel and an image. For A and w a kernel, the general expression for
a convolution is

a b c
jlj’k’lz Z Z Z w(m>n)p)"q]’+m,k+n,l+p) (8)

m=—an=—bp=—c

for flj,k)l the filtered image, where a,b,c € Z* and depend on the dimensions
of w. We assume periodic boundary conditions, and hence for edge pixels,
the convolution includes voxels from the opposite side of the image. We now
discuss how different kernels can be used to incorporate different connectivity
assumptions on the microstructure and the iterative scheme.

Connectivity provides information about how each voxel in the generated im-
age relates to the surrounding voxels. We consider typical three-dimensional 6,
18 and 26 connectivity methods between voxels [1], and this requires a = b =
c = 11in (8). For biased iteration, we consider a voxel to be resolved if all
its neighbours are of the same phase. For example, a 6-connected voxel only
requires six surrounding voxels (each touching a face of the central voxel) to
be in the same phase before being excluded from the iteration, whereas a
26-connected voxel requires twenty-six surrounding voxels to be of the same
phase (all face, edge and corner neighbours) before becoming resolved. Hence,
as the voxel connectivity increases, we increase the constraint for when a
voxel can be excluded from iteration.
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Connectivity methods are introduced into the iterative SA scheme using varia-
tions of an R3 kernel matrix My of ones for the corresponding connectivity i.
We refer to each connectivity kernel method as k;. In the case of k¢, M7 con-
tains ones at every entry. Entries corresponding to the corner and edge voxels
of My, are changed to zero to implement the different connectivity methods.
Hence, applying (8) with w = M, ; we produce the filtered image

0 voxel and all surrounding voxels are pore phase,
Ajx1 =<1+ 1 voxel and all surrounding voxels are solid phase,  (9)
i voxel has up to 1 solid phase neighbours.

Hence, if a voxel takes the value 0 or i+ 1, the voxel is resolved (assumed to
be in the correct phase at that iteration) and excluded from the algorithm’s
random selection. In the case of kyg, this method is comparable to initial
voxel detection for biased iteration [10].

4 Results

The two-point correlation functions were computed on 50° and 80 subsets of a
500° segmented coke micro-CT image. All simulations across different methods
were completed using the same initialisation and SA parameters. Iterations
were unrestricted, and the same threshold energy value of 2.5 x 10~* was used
to conclude iterations for all structures. This threshold is somewhat arbitrary
but is suitable for comparing iteration efficiency. All biased connected-voxel
schemes use the same algorithm, with different kernels being the only variation.

The convergence rates for the algorithm are affected by the various connectivity
methods. Figure 1(a) and (b) demonstrate that the original unaltered SA
approach requires significantly more iterations to reach convergence, and
this extra computational work is evident across both 50° and 80° structures.
There is an immediate reduction in iterations utilising a biased voxel scheme
with filtering kernels, with a further reduction in iterations evident with a
reduction in the connectivity value. Figure 1(c) and (d) show the target
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Figure 1: Comparison of the convergence rates and corresponding final radially
averaged solid-phase two-point correlation functions for digital microstructure
generation with: (a) and (c) 50° voxels; (b) and (d) 80° voxels. Energy error
threshold consistent for all simulations at 2.5 x 10~*. Voxel size 0.02 mm.
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Table 1: Comparison of computational efficiency for each algorithm. Nor-
malised compute time is the product of iterations and the normalised iteration
time. The NIT is averaged over 10 runs with 10000 iterations.

Algorithm | Iterations NIT NCT % SA NCT
80° voxels

SA 3.88 x 10° 1.00 3.89 x 10° 100.00

ko 213 x 10 1.08 2.29 x 10° 59.12

ki 1.83 x 10° 1.09 2.00 x 10° 51.44

Ke 1.13 x 10° 1.08 1.23 x 10° 31.52
50° voxels

SA 1.05 x 10° 1.00 1.05 x 10° 100.00

K26 564 x10° 1.11 627 x 10° 59.80

Kig 476 x 10° 112 532 x10° 50.70

%5 276 x10° 1.12 3.10 x 10° 29.60

two-point correlation functions are not affected by the connectivity methods
and are consistent across all methods.

Table 1 gives higher resolution information about the difference in computation
efficiency for the methods. Normalised iteration time for a method k; is defined

as
time for single iteration k;
NITy, = — ner oeon 5 (10)
time for single iteration SA

and is used to compare the methods since the kernel convolution requires extra
computation time (this additional compute time is approximately consistent).
Normalised Computation Time NCTy, is the product of iterations and NITy,.
Percentage value (%) of SA NCT (see Table 1) quantifies to what extent the
overall computation time has been reduced compared to SA. There is a distinct
reduction in the percentage value of SA NCT for all kernel methods compared
to the SA method. The changes appear consistent across the 50° and 80°
structures. The k¢ method showed a reduction in NCT of 68.48% and 70.4%;
k7 and kqg also reduced by 40.54% and 48.93%, on average.
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Figure 2 demonstrates that the generated microstructures show the same
qualitative pore and solid-phase distinction as the micro-CT images (Fig-
ure 2(a) and (d)). Microstructures produced using the simulated annealing
method and the kg method show some isolated voxels on the boundary due
to the periodicity assumption in kernel computation methods. Hence, a
voxel that appears isolated on one boundary is actually ‘connected’ via the
boundary to voxels on the opposing side of the simulation.

5 Discussion and conclusions

The micro-structures generated using connectivity-based kernel voxel bias
are quantitively and qualitatively comparable to the original SA method.
Due to the modest reduction in iterations required, a connectivity-based
voxel selection method can save time generating coke microstructures and
make larger sized reconstructions more feasible. Kernels can be updated
locally at each iteration around the target voxels, reducing the computational
overhead to scale this method to larger structures. It is known that for
some materials, the two-point correlation function alone is not sufficient
to generate statistically relevant microstructures and capture properties on
multiple length scales [5]. Future work will analyse the coke microstructures
generated in this work and determine if higher-order statistics are required.
Biased voxel methods are compatible with a wide range of spatial statistics [4],
and thus the connectivity kernel methods can still be utilised with additional
statistics. In summary, the connectivity of voxels can be incorporated into
biased iteration schemes using kernel convolution and reduces the required
iterations for coke digital microstructure generation.
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Figure 2: 3D microstructure visualisations. Voxel size 0.02 mm.
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