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Estimating energy savings from a train
driving advice system
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Abstract

TTG Energymiser is an in-cab system that provides real-time driving
advice to train drivers with the aim of reducing energy use subject to
meeting the train schedule. A survey of the efficacy of Energymiser has
been undertaken, to provide evidence for marketing claims. Results
from 23 different trials are analysed, where 16 of the trials were on
passenger routes and 7 were on freight routes. Each trial consists of
many trips, with Energymiser activated for around half, and yields
an estimate of the change in energy use when Energymiser is used. A
Bayesian hierarchical model is fitted to the 16 estimates from passenger
routes and provides an estimate of the mean saving and the standard
deviation of individual trials about the mean. The mean saving is 7.2%
and the standard deviation of individual trials is estimated as 3.3%.
The corresponding mean and standard deviation for freight routes are
8.4% and 5.8%, respectively.
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1 Introduction
TTG Energymiser is an in-cab system that provides real-time driving advice
to train drivers to help them stay on time and reduce energy use. It was
developed by researchers at the University of South Australia and Sydney
company TTG Transportation Technology, and is used by railways around
the world.

The calculation of the optimal driving strategy takes into account traction
and braking characteristics of the train, rolling resistance and aerodynamic
drag, track gradients and curves, and scheduled arrival times at stops and
intermediate locations.

The principles used to determine the optimal control strategy are described
in a pair of papers by Albrecht et al. [2, 1], where Pontryagin’s principle is
used to show that an optimal control strategy has only five driving modes:
maximum power, cruising at constant speed, coasting, regenerative braking on
a decline at constant speed, and braking. Albrecht et al. then used analysis of
an adjoint variable to determine the optimal sequence of controls and precise
switching points between control modes.

Figure 1 shows an optimal journey profile created with the Energymiser
software for an example train journey between Belp and Bern in Switzerland.
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Figure 1: Example speed profile for an optimal journey. The horizontal axis
is distance. The orange curve indicates the route speed limit in km/h. The
bold curve shows the ideal speed profile and control modes: power (green),
hold (blue), coast (grey) and brake (red). The green shading indicates the
elevation profile.

Energymiser uses gps to determine the current location and speed of the
train, and calculates an optimal driving strategy to the next timing point in
real time.

Rail operators run short trials to evaluate potential savings. They run trips
without advice then trips with advice, and compare the energy use. There
can be large variations in energy use for the same trip, but the mean energy
use with advice is generally less than the mean energy use without advice,
and there is less variation with advice.

Figure 2 shows energy use from a trial on an urban railway in Europe, with a
trip length of 56 km and 16 stops.

How can we predict savings from a small number of trips, and estimate the
savings over many trials? In Section 2 we describe a method for estimating
energy savings for a single trial with a small number of trips. Section 3
describes a meta-analysis of results from 23 different trials.
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Figure 2: Energy use from from 244 trips over the same route. There were
39 trips with advice (red) and 205 trips without advice (blue). Each dot
represents the energy use for a trip.

2 Estimating savings
Within each trial, we model energy use for a trip j as

Ej =

(
1− θaj +

∑
k

βkxkj

)
E0 + εj

where j = 1, . . . , n is the trip number, and n is the number of trips in the trial;
E0 is the mean energy use for all trips without advice and with covariates
set at zero; θ is the saving due to advice; aj is an indicator that is 1 when
advice is given, and 0 otherwise; xkj are values taken by covariates; βk are
coefficients for the covariates; εj is random error, independently distributed
with zero mean and a constant variance.

Each trial trip provides aj and Ej. The primary aim is to estimate θ and its
standard error, but this entails estimating E0 and βk as well. The covariates
considered were x1, coded as 0 or 1 to indicate direction along the route,
and x2 for the mass of the train on freight trains.

The estimation was performed using non-linear least squares.

Figure 3 shows the probability of exceeding a saving of θ, calculated using
n total trips from the data shown in Figure 2. Half the trips had advice.
The top graph is the result for n = 20 and the bottom graph is the result
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for n = 60 . Each graph shows the range of possible savings indicated by the
data. The pair of graphs shows how the certainty improves with the number
of trips.

3 Meta-analysis
Different trials could be different operators, different routes or different
timetables. Let θi be the underlying mean saving for trial i, and let θ̂i be
the estimated saving for trial i. What is the overall mean saving Θ that
Energymiser can provide, and how much will individual trials vary about this
mean? A Bayesian hierarchical model has the form

θi ∼ N
(
Θ, τ2

)
, θ̂i ∼ N

(
θi, σ

2
i

)
,

together with prior distributions for Θ and τ [e.g., 3]. The main objective
is to estimate the mean saving Θ, and the standard deviation of individual
trials about the mean τ. We know θ̂i and their associated standard errors σi.
We ignore the uncertainty in the estimation of σi in order to facilitate im-
plementation in the R package bayesmeta [4], but this has negligible effect
on the results. The assumed priors for Θ and τ are typically normal and
half-Cauchy, respectively,

Θ ∼ N(µ, σ20) and τ ∼ HC(x0, s) ,

where HC is the half-Cauchy distribution, and µ, σ20, x0 and s are hyper-
parameters.

The analysis follows from factorisation of the multivariate distribution of
unknowns conditional on the data

f(θ, Θ, τ | y) ∝ f(τ | y)f(Θ | τ,y)f(θ | Θ, τ,y) , (1)

where θ = (θ1, . . . , θI) and y = (y1, . . . , yI) where I is the number of trials.
The second and third terms on the right of equation (1) follow from inverse
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Figure 3: Predicted energy savings based on a comparison of n randomly
chosen trips where half had advice, with n = 20 (top) and n = 60 (bottom).
The red dots indicate the expected saving; the blue dots indicate the 95-
percentile credible interval.
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variance (precision) weighted averages. For the third term the independent
components are

θi | Θ, τ, yi ∼ N

(
yiφi +Θφτ
φi + φτ

,
1

φi + φτ

)
,

where φi = 1/σ2i and φτ = 1/τ2 . The second term is

Θ | τ,y ∼ N

(∑
yiψi +Θ0φ0∑
ψi + φ0

,
1∑

ψi + φ0

)
,

where 1/ψi = σ2i + τ2 , and the prior distribution for Θ is N(Θ0, 1/φ0) . In
the following it is convenient to introduce notation for the mean and precision
of the distribution Θ | τ,y ∼ N(Θ̂, Ψ−1) where Θ̂ is a vector of estimates of
trial means and Ψ is a vector of reciprocals of variances of trial means.

The first term in equation (1) is obtained through the following nice argument.
We start with

f(τ | y) =
f(τ,y)

f(y)
.

Now the numerator and denominator are expressed as

f(τ,y) =
f(Θ, τ,y)

f(Θ | τ,y)
, f(y) =

f(Θ, τ,y)

f(Θ, τ | y)
,

and so
f(τ | y) =

f(Θ, τ | y)

f(Θ | τ,y)
∝ f(Θ, τ)f(y | Θ, τ)

f(Θ | τ,y)
.

The left hand side of the above expression does not depend on Θ, so this
relationship holds for any value for Θ. In particular we set Θ as Θ̂, and
assuming that the distributions of Θ and τ are independent:

f(τ | y) ∝ f(τ)f(y | Θ̂, τ)

f(Θ | τ,y)
.
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That is

f(τ | y) ∝ f(τ)
∏I

i=1

√
ψi/(2π)e

−(yi−Θ̂)
2ψi

√
Ψe(Θ−Θ̂)

2Ψ
.

Notice that when Θ is set to Θ̂ the exponential term e(Θ−Θ̂)
2Ψ in the denomi-

nator reduces to 1.

Implementing these calculations requires Monte–Carlo simulations. Each
draw from the multivariate distribution begins with a draw from the scalar
distribution f(τ | y) given in equation (1). The draw can be made by, for
example, the Metropolis–Hastings algorithm or by a numerical inverse cdf
procedure. Other draws are from normal distributions. The output is:

• a distribution for Θ, from which a mean and standard deviation is
calculated;

• a distribution for τ, from which a mean and standard deviation is
calculated;

• posterior distributions for θi, from which a mean and standard deviation
is calculated as well as credibility intervals.

4 Results
We start by fitting the hierarchical distribution to all the trials. However,
a substantial difference between freight and passenger services is that the
latter typically make frequent stops according to a strict timetable, and
this may impact energy saving. We therefore analyse these two categories
independently.

Table 1 shows the estimates of expected energy savings from the 23 different
trials, where L0.95 and H0.95 indicate the lower and upper bounds, respectively,
of the 95% credible intervals. The credible intervals are set as the point
estimate plus or minus two standard errors. These prior estimates of the θi
and the corresponding standard errors are the inputs to the meta analysis.
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Table 1: Percentage savings yi and credible interval bounds [L0.95, H0.95] from
23 trials.

Type yi L0.95 H0.95
regional passenger 13.3 9.6 17.0

regional passenger 12.3 6.6 18.0

regional passenger 11.7 8.8 14.6

regional passenger 9.9 5.9 14.2

bulk freight 16.3 6.6 25.6

regional passenger 6.1 1.7 10.8

regional passenger 5.4 −3.2 14.2

regional passenger 5.0 1.4 8.9

regional passenger 6.7 2.7 10.6

regional passenger 2.8 0.5 5.1

regional passenger 5.9 2.9 9.1

regional passenger 5.3 2.0 8.6

regional passenger 7.9 3.2 12.5

regional passenger 3.5 0.5 6.6

regional passenger 7.9 3.7 12.0

freight 14.4 6.7 22.0

freight 7.4 2.4 12.0

intercity passenger 9.2 4.9 13.5

regional passenger 2.8 −10.6 15.4

freight 0.1 −7.5 7.3

freight 28.1 18.3 37.7

freight 7.7 −0.6 15.6

freight 9.2 −10.3 27.5
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Table 2: Posterior distributions of percentage energy saving.

trial: number parameter median mean L0.95 H0.95
All: 23 Θ 8.15 8.18 6.3 10.2

τ 3.65 3.76 2.0 5.7

Passenger: 16 Θ 7.41 7.42 5.6 9.2

τ 2.83 2.92 1.5 4.5

Freight: 7 Θ 11.03 11.04 5.5 16.6

τ 7.11 7.60 2.2 14.1

Tests of Energymiser during development suggested an overall mean saving
of 10%, and the developers thought there was a 2/3 probability that it would
be between 5% and 10%. So, the prior distribution for Θ is set as normal with
a mean of 10 and a standard deviation of 5. The developers also estimated
that there was a 1/2 probability that the standard deviation of trials about
the mean would be less than 5%. So, the median parameter of the half-Cauchy
prior for τ is set at 5. The results are summarised in Table 2, including the
shortest 95% credible intervals. A forest plot showing the posterior estimates
of θi is shown in Figure 4.

For passenger routes, the estimate of Θ is taken as the median of its posterior
distribution which is 7.4%. The posterior distribution is near symmetric and
the mean and median are close. The estimate of τ is taken as the median
of its posterior distribution and is 2.8%. For freight routes the estimates of
Θ and τ are 11.0% and 7.1%, respectively.

5 Conclusion
Based on 16 passenger trials and seven freight trials:

• passenger trains have an average saving of 7.4%, and it is estimated
that around two thirds of trials have a saving between 4.6% and 10.2%;

• freight trains have a slightly higher average saving of 11.0%, and it



5 Conclusion C120

0 5 10 15 20

Observed Outcome

Study 23
Study 22
Study 21
Study 20
Study 19
Study 18
Study 17
Study 16
Study 15
Study 14
Study 13
Study 12
Study 11
Study 10
Study 9
Study 8
Study 7
Study 6
Study 5
Study 4
Study 3
Study 2
Study 1

 8.31 [ 4.58, 12.05]
 7.94 [ 4.69, 11.20]

15.49 [11.65, 19.32]
 4.19 [ 0.91,  7.46]

 6.82 [ 3.23, 10.41]
 8.91 [ 6.24, 11.58]
 7.63 [ 4.85, 10.41]

11.12 [ 7.84, 14.41]
 7.96 [ 5.32, 10.59]
 4.24 [ 1.90,  6.59]

 7.97 [ 5.22, 10.71]
 5.81 [ 3.40,  8.23]
 6.27 [ 3.92,  8.61]
 3.33 [ 1.26,  5.41]
 7.04 [ 4.46,  9.62]
 5.69 [ 3.15,  8.24]

 7.00 [ 3.68, 10.32]
 6.69 [ 3.96,  9.42]

11.22 [ 7.74, 14.70]
 9.44 [ 6.80, 12.08]

11.17 [ 8.87, 13.46]
10.69 [ 7.70, 13.67]
12.17 [ 9.60, 14.74]

Figure 4: Posterior trial (study) means.

is estimated that around two thirds of trials have a saving between
3.9% and 18.1%.

So, train operators can expect to save around 8% on fuel costs if they
adopt Energymiser. Since energy costs are a substantial proportion of a rail
operator’s outgoing payments, and the cost of Energymiser is relatively low,
this would be a substantial saving. Given sufficient trials, it would be feasible
to explain, in part at least, the deviations of θi about Θ in terms of variables
such as train operator, train driving crew, and energy source using multiple
regression. However, this was not an aim of this research.
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