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Abstract

Modern ‘smart’ materials have complex microscale structure, often
with unknown macroscale closure. The Equation-Free Patch Scheme
empowers us to non-intrusively, efficiently, and accurately simulate
over large scales through computations on only small well-separated
patches of the microscale system. Here the microscale system is a solid
beam of random heterogeneous elasticity. The continuing challenge is
to compute the given physics on just the microscale patches, and couple
the patches across un-simulated macroscale space, in order to establish
efficiency, accuracy, consistency, and stability on the macroscale. Dy-
namical systems theory supports the scheme. This research program is

DO1:10.21914 /anziamj.v64.17940, (©) Austral. Mathematical Soc. 2024. Published
2024-04-11, as part of the Proceedings of the 20th Biennial Computational Techniques and
Applications Conference. 1sSN 1445-8810. (Print two pages per sheet of paper.) Copies of
this article must not be made otherwise available on the internet; instead link directly to
the DOI for this article.


https://doi.org/10.21914/anziamj.v64.17940

Contents C162

to develop a systematic non-intrusive approach, both computationally
and analytically proven, to model and compute accurately macroscale
system levels of general complex physical and engineering systems.
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1 Introduction

In structural engineering, microscale lattice materials can be light and highly
stiff with customizable macroscale mechanical properties [e.g., 18]. The chal-
lenge we address herein is to accurately and efficiently predict macroscale
characteristics emergent from the microscale lattice. Similarly, composite
materials and structures are inherently heterogeneous and anisotropic across
multiple scales. Multiscale modelling is thus critical to the design of composite
structures for lightweight mechanical performance |e.g., 12, 7]. Such composite
materials are used in electronics, space, medical, transportation, and other in-
dustries [e.g. 11]. Herein we establish that the Equation-Free Patch Scheme can
non-intrusively, efficiently, and accurately simulate over macroscales through
computations on only small well-separated patches of the microscale system.
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Consider an example elastic beam with heterogeneous elasticity in 2D as in
Figure 1: say 628 cm long, 20 cm wide. The beam is heterogeneous because it
is constructed from a modern material with micro-structure of size 3 cm—so
that the heterogeneity is here ‘visible’ in Figure 1. With a 3 cm micro-grid,
the modelling requires circa 5000 variables. This specific scenario is easily
computable, ode23 took 14 s CPU time to simulate one period of beam bending
oscillation. But if a more realistic 3 mm micro-structure is simulated, then
the computation time increases by a factor of 1000. If 3D elasticity modelling
is required for the beam, then the computation time increases by even more
orders of magnitude. The patch scheme [17] we develop herein potentially
reduces macroscale computation time by orders of magnitude—more reduction
in higher-D space and/or smaller micro-scale |6, §7].

The patch scheme achieves efficiency by only computing on small sparse
patches in space. Section 2.1 discusses how the patch scheme is non-intrusive in
that it just ‘wraps around’ a user’s microscale code—a desirable property also
identified by Biezemans et al. [1]. The patch scheme, alternatively called the
gap-tooth method, “has formal similarity with SP [superparametrization|” |10,
p. 62] that was developed in meteorology for weather and climate predictions,
and is also akin to the so-called FE-FFT and FE* methods |7, §4.7].

Figure 1: movie of a full-domain simulation of a heterogeneous beam showing
that beam bending waves and longitudinal compression waves propagate with
some ‘average’ properties.
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A given microscale discretisation of heterogeneous elasticity We
adopt a simple robust microscale approximation of 2D elasticity within the
beam. On the staggered microscale xy-grid of Figure 2 define the displace-
ments: », horizontal w;(t); A, vertical vi;(t). Microscale elasticity here first
uses centred finite differences to compute stresses, for heterogeneous Lamé
parameters A, (, at the labelled microscale grid-points (Figure 2):

9 Oy = My [O515/8Y; + Sivy/Oxi] (1a)
©  Oxx i= (Ay + 21y5) 055/ 0% + A d5vij/ 0y ; (1b)
©  Oyy = Ao/ Ox; + (Ay + 2y) O5vy5/ 0y (1c)

Second, centred finite differences compute the following acceleration ODEs

> iy = 010w /8% + 050%y/dYj, (2a)
A i}ij = 510‘,@/6761 + 6)’ ny/éyj y (Qb)

potentially with optional small phenomenological damping supplied by a
discretisation of KVij , KVZ\')ij. The patch scheme wraps around whatever
microscale code a user supplies—here it is the microscale system (1) and (2)

We nondimensionalise the system so that the density is one, and the speed of
a macroscale compression wave along the beam is about one, that is, time in
these simulations is roughly in milli-seconds.
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Random periodic heterogeneity The Lamé parameters which appear in
the stresses (1) are
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in terms of Young’s modulus E and Poisson ratio v. To have strong microscale
heterogeneity we choose these parameters randomly so that at each microscale
grid-point (iid): Ey is log-normal (here varies by factor of about ten); and
vy is uniform on [0.25,0.35]. Figure 3 shows an example Eij. Despite such
strong heterogeneity, the movie of Figure 1 shows the macroscale dynamics
appears relatively simple.

2 Equation-free patch scheme

Instead of computing the entire beam as seen in Figure 1, the patch scheme
computes only in small sparse spatial patches such as Figure 4. That is, each
patch corresponds to a ‘“representative volume element” in other multiscale
methodologies. In this example case, the patch scheme reduces compute time
by a factor o< 1 := (patch size)/(spacing H), which here is just a modest
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factor of 1/4. But with greater scale separation and/or in higher spatial
dimensions, the scheme often reduces computational time by many orders of
magnitude |e.g., 6, §7 and Fig. 11 show speed-ups of up to 100, 000].

The movie of Figure 4 shows a slow progressive wave of beam bending, together
with a not-so-slow compression wave along the beam. These macroscale
predictions are accurate (Section 3) due to the correctness of our simple
coupling between patches—even when heterogeneity is strong. The patch
scheme makes these accurate macroscale predictions even when the macroscale
closure is unknown: the scheme does not code a closure. Further, ‘the closure’
varies depending upon human assumptions such as choosing averaged models
versus cosserat models—the patch scheme makes no such closure assumptions.
The only assumption is that the macroscale quantities of importance vary
smoothly between neighbouring patches.

2.1 Scheme is non-intrusive functional ‘wrapper’

Consider one of the patches of the 2D beam shown in Figure 4. With the
given microscale xy-grid (Figure 2), zooming in to the microscale each patch
is like that of Figure 5. Here each patch extends across the cross-section
(y-dimension) of the beam. Open symbols in Figure 5 are ghost nodes outside

Figure 4: movie of a patch scheme simulation of a heterogeneous beam showing
the macroscale propagation across the patches of beam bending waves and

longitudinal compression waves.
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the patch and implement given stress-free top/bottom conditions on the beam.
The only addition required by the patch scheme are the edge values (‘squared’
micro-grid nodes in Figure 5) on the left /right of each patch.

The patch scheme couples patches together by providing the patch-edge values
through interpolation across the macroscale between patches |14, 15, 5|. Here
we interpolate from each of the centre patch values across the beam (i =4
in Figure 5) of ‘nearby’ patches, to determine the corresponding patch-edge
value. Here we implement spectral (FFT) interpolation between the patches
for high accuracy (Section 3). The scheme does not presume that any average
is appropriate.

This implementation shows that the patch scheme is non-intrusive [1]: it just
‘wraps around’ any micro-grid code a user trusts. Consequently, we provide a
toolbox [8] for others to implement the patch scheme around their micro-code.

How big should the patches be? Consider the common multiscale scenario
(Figures 1 and 3) where there is (near) periodic microscale structure repeated
manyfold to form a macroscale structure. Proofs (discussed further in Sec-
tion 3.2) establish the patch scheme makes accurate macroscale predictions
provided the patch contains an integral number of periods of the microscale



2 Equation-free patch scheme C168

structure [4, 3|. The least microscale computation is done when the patches
are as small as possible, namely just one microscale period in size—such as
used to generate Figure 4.1

2.2 Scheme embeds macroscale dynamics

Given the patch scheme does not assume anything about what are ‘correct’
macroscale variables, a crucial question is the following: how can we be
assured that the patch scheme captures the macroscale slow dynamics?  An
answer is provided by the Whitney [19] embedding theorem.

Roughly, the theorem is that every mD manifold is parametrisable from
almost every subspace of more than 2mD. Let’s see what this means for us.
In essence, the patch scheme provides the higher-D subspace in which the
slow manifold of the macroscale wave dynamics is embedded.

For beams in two spatial dimensions, the basic macroscale beam models
have, at each cross-section, displacement and velocity of both bending and
compression. Thus the elastic beam dynamics has a slow manifold that is
m = 4D at every cross-section.” Alternatively, 2D cosserat beam models
add a shear mode to the macroscale model—two more variables—leading
to a not-quite-so-slow manifold of m = 6D at every cross-section. These
physically based models are slow manifolds because they focus on the relatively
slow waves of solutions varying slowly in space, and neglect all the faster
high-frequency cross-waves.

!Smaller patches may be used, but then to preserve accuracy Bunder, Kevrekidis, and
Roberts [3] established that one needs to invoke an ensemble of patches that then does
not reduce the total computational count. However, there may be advantages to this with
highly parallel computers.

2Such statements, invoking a manifold or subspace “at every cross-section”, are in
a sense developed by the theory of Roberts [13]. That is, in systems of large spatial
extent there often are important, spatially global, invariant manifolds of high-D that are
effectively decomposable into a union of spatially local manifolds/subspaces of relatively
lower dimension—a dimension determined by the spatial cross-section—and that are weakly
coupled to neighbouring locales.
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In the patch scheme, Figures 1 and 4 show simulations with a cross-section of
N, = 7 micro-grid intervals (that only six lines appear across the beam is due
to data being plotted at the ny — 1 internal microgrid nodes across the beam,
see Figure 5), but let’s discuss the case of just ny =4 (as shown in Figure 5).
For ny =4, there are seven microscale nodes across each patch edge. Each
node has a displacement and velocity, and so leads to a 14D subspace for
macroscale communication between patches.

Because 14 > 2 -6 > 2 -4, the Whitney embedding theorem asserts that the
patch scheme exchanges enough information to almost surely parametrise
both such slow manifolds of the macroscale dynamics. The patch scheme does
not need to explicitly compute and exchange specific assumed macroscale
average quantities.

3 Scheme has proven accuracy

Section 3.2 discusses established theory which generally proves that the patch
scheme makes accurate macroscale predictions. Before discussing theory, we
first report some computational verification of high accuracy.

3.1 Computation verifies exactness

Here we restricted attention to linear elasticity so we know that the wrapped
patch system is fully characterised by the resultant Jacobian matrix. We
numerically compute the Jacobian matrix of the patch scheme by elementary
numerical differentiation.

Because of the macroscale translational invariance of the patch scheme, the
macroscale eigenvectors are correctly sinusoidal. Hence the only macroscale
errors occur in the eigenvalues of the Jacobian. Figure 6 plots the spectrum
of all eigenvalues for one example of random heterogeneity, in the case of five
patches for simplicity. Observe there are:

e (on the right) four A = 0 of rigid beam motion;
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e four —0.001 £1i1.057 and four —0.003 +=12.111 of compressions waves;

e four —0.001 +10.061 and four —0.004 +10.237 of beam bending waves;

e with the above macroscale eigenvalues separated by a spectral gap from
the following sub-patch microscale eigenvalues;

e (on the left) many SRA < —0.1 of uninteresting sub-patch micro-scale

fast-waves (headed by ten eigenvalues around —0.14 +19.29).

To quantify the accuracy, Table 1 compares eigenvalues obtained from full-
domain code, with the above macroscale eigenvalues obtained by the wrapped
patch scheme. For all patch size ratios and heterogeneities tested, the patch
scheme’s macroscale eigenvalues are exact to numerical round-off error.

Such exactness is due to the spectral interpolation used here. If, instead
of spectral, local polynomial interpolation of degree p is used to couple the
patches, then generally the patch scheme has macroscale errors oc H? where
H = inter-patch spacing [14, 15]. That is, patch scheme errors are controlled
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% r=1 r=1Table 1: error in patch scheme’s

macro-eigenvalue | 1 = 1 g

—0.001 £10.061 | 2e-12 1le-12 2e-13  macroscale eigenvalues A for var-
—0.001 £10.061 | 2e-12 4e-12 2e-12 ious patch size ratios 1: the
—0.004 +10.237 | 1le-12 8e-13 3e-12  macroscale As are exact to round-
—0.004 £10.237 | 1e-12 2e-12 3e-12  off error—due to patch coupling
—0.001 £11.057 | 7e-13 4e-13 6e-13 by spectral interpolation.
—0.001 +11.057 | 6e-13 5e-13 6e-13

—0.003 +i2.111 | 1le-13  2e-13  2e-13

—0.003+12.111 | 4e-13 5e-13  2e-13

in the same way that we control classic macroscale discretisations of PDEs
that are smooth in space (without microscale heterogeneity): one changes the
order of interpolation and/or patch spacing to achieve a desired accuracy for
a given class of problems.

In particular, the patch spacing H has to be small enough to resolve the
macroscale variations of interest. For the exact spectral scheme, an alternative
version of the criterion is the following: one has to choose enough patches in
the domain so that the spectrum of macroscale-eigenvectors forms a sufficient
basis to represent the macroscale structures to be explored. For example, in
a beam bending problem, one would need at least five patches in order to
be able to represent the approximately quartic macroscale structure of the
bent beam. Another example might be where the loading and/or interest is
localised, when one aggregates patches near the localised structure [e.g., 9].

Undamped waves? With zero viscosity, there are only oscillations in
the underlying physics. In such a scenario computational methods are very
delicate. Here, Figure 7 illustrates that all eigenvalues of the patch scheme
have [93A] < 10723 Hence, even with no viscosity, the patch scheme preserves
the oscillatory wave nature of the heterogeneous physics.

3In some realisations of the heterogeneity, the sensitive multiplicity four eigenvalue
A = 0 numerically splits into four showing |9A| up to 10~® due to round-off errors.
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There is a perception that the patch scheme “only works well on problems
with an inertial manifold and for systems in which most modes are strongly
decaying” [10, p.62]. This verification of accuracy for purely elastic beams
shows that this perception is false. Applications and theory for other wave
systems also refute this perception |e.g., 5, 3, 6].

3.2 Mathematical analysis proves consistency

Mathematical analysis has proven properties of the patch scheme in general.
Mostly, the published proofs explicitly address dissipative (nonlinear) systems.
However, as discussed by Bunder, Kevrekidis, and Roberts [3], the patch
scheme in space only recasts spatial interactions, so whether the time derivative
is 0/0t of dissipation or 9?/0t? of waves makes little difference.

Two complementary types of results have been proven. They involve the
spacing between patch centres H. First, Centre Manifold Theory may be
applied at finite spacing H by introducing a ‘bookkeeping’ parameter y to
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label inter-patch communication |e.g., 15, §2| to prove the existence of a
slow manifold in the patch scheme (including when it is applied to nonlinear
systems). Then the parameter y structures inter-patch interactions, and
their algebraic expression, to empower theory based at vy = 0, via reqular
perturbation, to address finite y such as the case of full coupling y =1 [15,
Cor. 2|.

Second, the patch scheme is consistent with the underlying micro-code as the
patch spacing H — 0 [15, Thm. 7|. The consistency is that the macroscale
of the patch scheme is the same as the macroscale of the given micro-coded
system, to errors O(Hp) when using polynomial interpolation of degree p.
For example, spectral interpolation corresponds to ‘p = 0o’ so then errors
vanish to all orders as in Table 1.

These results and general proofs were first done for homogeneous systems |e.g.,
14, 15]. They were subsequently extended to heterogeneous microscales [4],
and recently extended to alternative inter-patch coupling that preserves self-
adjointness [3]. Interestingly, the extension of the theoretical support to
heterogeneous cases invokes the ensemble of all phase-shifts of the heterogene-
ity. The ensemble is spatially homogeneous, so the homogeneous proofs and
results apply to establish the heterogeneous results.

4 Conclusion

As an initial exploration of the patch scheme for homogenisation of hetero-
geneous elasticity, we considered the prototypical case of a 2D elastic beam.
The scheme gives a non-intrusive and efficient computational homogenisation
of a given microscale system via spatially sparse small patches. The patch
coupling has proven accuracy and controllable error at finite scale separation.

The patch scheme makes only one assumption: in the scenarios of interest to
a user, there is no significant spatial structures in the mesoscale between the
patch spacing H and the microscale resolved in the patches. In contrast to
most other multiscale methods, there is: no assumed boundary conditions on
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Representative Volume Elements (variously periodic, Dirichlet, Neumann);
no explicitly assuming slow variables; and no presumed necessary variational
principle. The scheme is entirely physically interpretable: there is no hidden
mystic machinations of neural networks [e.g., 2|

The patch scheme is simple to apply. In contrast to other multiscale methods
there is: no arbitrary averaging; no oversampling regions; no buffer regions;
no action regions; no guessed fast/slow variables; no epsilons; and no limits.
As a non-intrusive ‘wrapper’, anyone can start using the patch scheme via a
MATLAB/Octave Toolbox [8, 16|
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