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Abstract

Compared to more typical computational fluid dynamics techniques,
the lattice Boltzmann method (lbm) is relatively new and unexplored.
In recent years, axisymmetric lbm formulations, which can simulate flow
in rotationally symmetric 3D geometries, have been published. Here
we verify a novel axisymmetric lbm implementation using numerical
criteria. Hagen–Poiseuille and Womersley flow are considered within
a straight tube where analytic solutions are available. With this, we
establish sufficient accuracy of the approximated flow and study the
effects of changing simulation parameters (e.g. Reynolds number,
Womersley number) and spatial/temporal parameters (e.g. relaxation
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time, mesh nodes, time steps). Furthermore, steady and oscillatory
flows within a periodically-varying, longitudinally asymmetric geometry
are considered. Analytic solutions are not available in these cases;
however, the validity of the axisymmetric lbm for curved boundaries
is ensured through convergence, mesh independence and qualitative
observations. Guaranteeing reasonable flow field determination for
the aformentioned geometry is relevant to a larger problem where
particulate suspension is pumped back and forth through a membrane
of axisymmetric micropores. In these circumstances, experiments have
induced directed particle transport even though there is no net flow of
the carrier fluid. Hence, our work aims to improve current numerical
simulations of these flow problems to better understand the factors
that facilitate particle transport.
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Figure 1: Axisymmetric, longitudinally asymmetric, periodic micropore cross-
section.

1 Introduction
Modelling fluid flow within micropores can provide valuable insights across
a wide range of applications [2]. A common issue that arises in problems
with complex pore profiles is solution intractability. In recent years, there has
been a resurgence of work aimed at a more comprehensive determination of
the flow fields and suspended particle trajectories in axisymmetric micropore
structures [4, 7]. A more specific problem considers a suspension that is
pumped back and forth between two basins separated by a membrane consist-
ing of many axisymmetric micropores. These micropores are spatially periodic
and longitudinally asymmetric, with some configurations yielding directed
particle movement from one basin to the other. Achieving suspended particle
transport with no net flow of the carrier fluid is favourable as it bodes well for
the system’s applicability as a Brownian motor [1], which would be beneficial
in the design of microfluidic devices. The curved sawtooth axisymmetric
pore cross-section in Figure 1 is an example of the aforementioned micropore
structures. An improved determination of the resulting flow fields would aid
substantially in related research and development [4, 7].

Flow through axisymmetric micropores has been recently studied extensively
utilising a boundary element method [3]. In those simulations, boundary
integrals are required to obtain surface forces and Stokes flow is assumed
in order to avoid inertial terms and to make the solution tractable. In
contrast, one of the main advantages of the lattice Boltzmann method (lbm) is
consistent boundary conditions that do not become more difficult to implement
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as the geometry becomes more complex [6]. Also, periodic boundary conditions
in the main flow direction are more straightforward to implement in the lbm.
In addition, the lbm solves the Boltzmann equation which is equivalent to
the Navier–Stokes equations through Chapman–Enskog analysis [6]. This
means the Reynolds number (Re) can be freely set rather than applying the
Stokes flow restriction of Re ≪ 1 . In a previous study, we developed a novel
axisymmetric lbm implementation, which was then able to simulate oscillatory
fluid flow in longitudinally symmetric and asymmetric geometries [8]. Here, we
aim to thoroughly study the convergence behaviour of that implementation.

2 Axisymmetric lattice Boltzmann method

2.1 Axisymmetric flow equations

Due to axisymmetry, we need only consider an axial direction z and radial
direction r as part of a reduced 3D cylindrical coordinate system. Adopting
the Einstein summation convention, the governing equations are [10]
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where i, j ∈ {z, r} , t is time, p is pressure, ρ is fluid density, ν is kinematic
viscosity, xi and xj represent position, ui and uj are the velocity components
and δir is the Kronecker delta.

2.2 Formulation

The lbm evolves partial fluid densities on a lattice by incorporating a collision
step and streaming step. The axisymmetric lattice Boltzmann equation takes
the form [10]

fα(x+ eα∆t, t+ ∆t) − fα(x, t) = −τα(fα − feqα ) +wαθ∆t+
∆t

κc2
eαiFi , (2)
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where fα is the distribution function of particles, x is the position vector, t is
time, α is a subscript to denote direction in the D2Q9 lattice velocity model
(Figure 2), ∆x is the lattice spacing, ∆t is the time step, and c = ∆x/∆t is
the lattice speed. The weighting according to the D2Q9 is

wα = (4/9, 1/9, 1/36, 1/9, 1/36, 1/9, 1/36, 1/9, 1/36) , (3)

the lattice velocity is

e = c((0, 0), (1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1)) ,
(4)

a constant is
κ =

1

c2

∑
α

eαzeαz =
1
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∑
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eαreαr = 6 , (5)

and some additional terms are
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where all terms containing r in the denominators are set to zero when r = 0

to avoid singularities [10]. The relaxation time τ describes the characteristic
time a system away from equilibrium takes to relax to equilibrium. The local
equilibrium distribution is defined as

feqα = wαρ
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where ur and uz are the directional components of the macroscopic velocity
and ρ is the fluid density. For every time step, conservation of mass and
momentum require, respectively,

ρ =
∑
α

fα , ui =
1

ρ

∑
α

eαifα . (8)
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Figure 2: D2Q9 lattice velocity model.

Even though this axisymmetric lbm has been verified previously [9], here
we provide an in-depth analysis discussing the effect of changing intrinsic
parameters on the method’s accuracy. The implementation used here is
independently developed and thus validation is necessary.

2.3 Parameters

For characteristic length defined as twice the maximum radius R of the
axisymmetric cross-section (Figure 1), the Reynolds number, Mach number
and kinematic viscosity are [8], respectively,

Re =
2UcR

ν
, Ma =

√
3Uc

c
and ν =

c2∆t(2τ− 1)

6
, (9)

where Uc is the characteristic velocity. It is essential to ensure Ma < 0.3

to maintain reasonable accuracy [6]. Due to the underlying assumption of
simulated fluids being Newtonian and incompressible, we require the numerical
velocities to be sufficiently low so that compressible effects are circumvented.

To reliably achieve appropriate Mach numbers Ma across all simulations, the
simple choice of ∆x = ∆t = 1 works well. Firstly, this sets the number of
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radial nodes in the lattice to Nr = R and the number of time steps to Nt = T

where T is the total time in the case of steady flow and the duration of the
temporal period in the case of oscillatory flow. Setting the lattice spacing
and time step like this also yields Uc = Re(2τ− 1)/(12Nr) . Then to achieve
low Ma for any given τ and Re, the mesh resolution is increased.

2.4 Boundary conditions

In the computational domain, we consider a single spatial period. At the left
(z = 0) and right (z = L) interfaces of the domain, the generalised periodic
boundary condition is used [5]. This condition is highly efficient and works
by streaming outbound partial densities to the opposite end to simulate
indefinitely repeated geometries on each side.

There is an axisymmetry condition on the centreline (r = 0) which reflects the
radial lattice velocities e of outbound densities while keeping the same axial
lattice velocity. Variations of a no-slip condition are utilised for the upper
hard wall boundary. A simple bounce-back condition is used for straight wall
simulations where the lattice velocities of outbound densities are reflected in
both directions, and the interpolated bounce-back condition [6] is used for the
curved sawtooth geometry from Figure 1. Finally, a pressure gradient is the
driving force of the flow. This is added to the axial component of the force
term Fi from equation (6) and varies depending on the nature of the flow.

3 Steady flow
To achieve constant flow in the positive axial direction, the pressure gradient
needs to be constant. To apply this, we add a constant pressure p0 to the
axial component of the force term from equation (6):

Fi = −
ρuiur

r
−

2ρνui

r2
δir + p0δiz , i ∈ {z, r} . (10)
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Figure 3: L2-norm error versus time steps for Re = 1 and (a) varying number
of radial nodes Nr with τ = 0.8 ; (b) varying relaxation times τ with Nr = 40 .

3.1 Hagen–Poiseuille flow (steady flow in a pipe)

Hagen–Poiseuille flow is characterised as axisymmetric steady flow through
a pipe with constant radius and length much larger than its radius. To
quantify the effectiveness of our numerical simulations, the L2-norm error of
the velocity is calculated via

ϵ =

√√√√∫R

0
[uz(r) − uza(r)]2 dr∫R

0
uza(r)2 dr

where uza(r) =
p0

4νρ
(R2 − r2) . (11)

Here uz is the numerical axial velocity calculated through the lbm and uza is
the analytic parabolic axial velocity for Hagen–Poiseuille flow. The integrals
in equation (11) are approximated with summations due to the lbm only
obtaining velocities at discrete lattice positions. The benefit of starting with
Hagen–Poiseuille flow is that an analytic solution is available because of the
simple geometry. The density of the fluid can be set freely but the choice
of ρ = (p0R

2)/(4Ucν) simplifies matters as the maximum velocity on the
centreline r = 0 becomes the characteristic velocity Uc.

Figure 3 showcases two sets of numerical L2-norm error studies when using the
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Figure 4: Velocity vector field of steady flow through asymmetric geometry.

axisymmetric lbm to calculate Hagen–Poiseuille flow. For simplicity, Re = 1

across all simulations. For Figure 3(a), τ = 0.8 when four different mesh
resolutions are trialled, whereas Nr = 40 in Figure 3(b) for four simulations
with varying τ. In both plots, the horizontal axis is in thousands of time
steps and the vertical axis is a log scale of L2-norm error. Changing Nr and τ

individually creates a trade-off between convergence and accuracy. From
Figure 3(a), increasing the number of radial nodes Nr slows convergence but
reduces error. Similarly, a lower value of τ corresponds to lower error solutions
at the cost of slower convergence. The error tends to constant values in both
plots as the numerical solutions converge.

3.2 Steady flow in an asymmetric geometry

We also simulate steady flow in pipes with variable radius. In particular,
Figure 4 presents the macroscopic velocity vector field in the curved sawtooth
profile, as calculated by the axisymmetric lbm. Only a subset of the vectors
are visualised for clarity. Solutions were calculated with the axial length of
one spatial period L = 3R , constriction of R/2 at inlet and outlet, Re = 1 ,
Nr = 40 and τ = 0.8 . The same simulation was conducted with different
mesh resolutions and it was found that the velocity profile, when scaled by Uc,
converged quickly, indicating mesh independence of the solution. The colour
map given in Figure 4 highlights areas of high velocity with red and low
velocity with blue. The axial velocity profile in the constriction regions (z = 0
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and z = 3R) resembles Hagen–Poiseuille flow solutions whereas the axial
velocity profile at the maximum expansion (z = 2R) flattens as r/R → 1 with
non-zero radial velocity contributions in the main channel and expansion
region.

4 Oscillatory flow
To achieve oscillating flow, the pressure gradient term needs to be sinusoidal
instead of constant. Therefore, the force term is altered to

Fi = −
ρuiur

r
−

2ρνui

r2
δir + p0 cos

(
2πt

T

)
δiz , i ∈ {z, r} , (12)

where p0 is the maximum amplitude of pressure and T is the period of the
oscillation. This time-varying addition gives rise to a dimensionless parameter,
the Womersley number

W0 = R

√
2π

Tν
, giving Nt =

12πN2
r

W0
2(2τ− 1)

. (13)

The number of time steps Nt is inversely proportional to W2
0 , which means

that lower Womersley numbers require more time steps to calculate flow fields.

4.1 Womersley flow (oscillatory flow in a pipe)

Womersley flow is characterised as flow in a long straight pipe with temporally
periodic pressure variations. Once again, the simplified geometry means we
have access to an analytic solution given by [10]

uza(r, t) = ℜ

[
p0T

2πiρ
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)
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where J0 is the zeroth-order Bessel function of the first kind and ϕ = W0(−1+
i)/2 .
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Figure 5: Comparison of flows with different Womersley numbers (a) W0 = 1 ;
(b) W0 = 2 ; (c) W0 = 5 ; (d) W0 = 10 . Dots represent the numerical
velocities whereas lines represent the analytic solutions.

Figure 5 plots the axial velocity profiles against radial position for four values
of W0, each at four time points within the first quarter of the period. For
these simulations, the parameters are set to Re = 1 , τ = 0.75 and Nr = 40 .
Figure 5(a) shows the velocities for W0 = 1 , where a parabolic profile emerges
with decreasing maximum velocity as time passes. This is expected as the
pressure term in equation (12) is at its maximum positive value at t = 0 . As
t → T/4 , the pressure drops causing a decrease in velocity. Lower values of W0

correspond to a velocity flow profile that is more sensitive to pressure changes.
On the other end of the spectrum, the higher value of W0 = 10 produces
a velocity profile reminiscent of plug flow, which is much less responsive to
pressure changes and exhibits slower speeds overall.

All numerical velocities presented in Figure 5 agree nicely with the analytic
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Figure 6: Velocity vector fields of oscillatory flow through asymmetric geome-
try with (a) t/T = 0 , W0 = 1 ; (b) t/T = 0 , W0 = 5 ; (c) t/T = 0.4 , W0 = 1 ;
(d) t/T = 0.4 , W0 = 5 .

solutions; however, the axial velocity L2-norm error throughout the period is
ϵ ≈ 10−2 for W0 = 10 , whereas ϵ ≈ 10−3 for a lower value of W0 . This is
unsurprising, as higher values of W0 require fewer time steps for the same
parameter set from equation (13).

4.2 Oscillatory flow in an asymmetric geometry

Having established sufficient accuracy and convergence of the axisymmetric
lbm implementation with preliminary simulations, we now arrive at the
desired simulation. Here we keep all characteristics of Womersley flow and
change the pore boundary to that of the longitudinally asymmetric curved
sawtooth profile. Figure 6 depicts velocity vector fields at two time points,
with W0 = 1 and W0 = 5 .

Immediately we observe that Figure 6(a) resembles the steady-state flow
field from Figure 4, whereas the velocity in Figure 6(b) is slower and more
uniform in magnitude across the main channel, as expected. This is simi-
lar to the differences seen in Figure 5(a) and Figure 5(c). Another major
observation is that the flow field for W0 = 5 is still reversing at t/T = 0.4

(Figure 6(d)), while for W0 = 1 it has reversed entirely (Figure 6(c)). These
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observations demonstrate the similarities with expected fluid behaviours from
the Womersley flow results (Figure 5) which adds to the credibility of these
solutions.

5 Conclusion
In summary, we presented multiple simulations for various flow problems
and parameters leading up to oscillatory fluid flow through an axisymmetric,
longitudinally asymmetric and spatially periodic micropore structure. The
importance of three key parameters was investigated throughout. Increasing
mesh resolution and lowering relaxation time resulted in higher accuracy at
the cost of slower convergence. Additionally, lowering the Womersley num-
ber produces less error overall; however, the number of time steps required
increases rapidly. This is potentially problematic for simulations with typical
nanoscale conditions such as low Reynolds and Womersley numbers. Never-
theless, the main goal of verifying the independently developed axisymmetric
lbm implementation was achieved. Thus, this method of flow field determina-
tion is reliable and can be coupled with a suspended particle transport solver
in future work.
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