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Abstract

The diffusion process plays a crucial role in various fields, such as
fluid dynamics, microorganisms, heat conduction and food processing.
Since molecular diffusion usually takes place in complex materials and
disordered media, there still exist many challenges in describing the
diffusion process in the real world. Fractional calculus is a powerful tool
for modelling complex physical processes due to its non-local property.
This research generalises a fractional diffusion model by using the
distributed-order operator in time and the Riesz fractional derivative
in space. Moreover, variable diffusion coefficients are introduced to
better capture the diffusion complexity. The fractional diffusion model
is discretised by the finite element method in space. The approximation
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of the distributed-order operator is implemented by Simpson’s rule
and the L2-1σ formula. A numerical example is provided to verify
the effectiveness of the proposed numerical methods. This generalised
fractional diffusion model may offer more insights into characterising
diffusion behaviours in complex and disordered media.
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1 Introduction
Fractional calculus, developed by generalising the integrals and derivatives
from the integer order to an arbitrary order, plays an important role in
modelling complex phenomena in various dynamic systems [7]. Due to the
non-local property of fractional derivatives, a variety of fractional partial
differential equations (fpdes) have been explored to simulate real-world
physical phenomena such as the heat transfer, signal processing, viscoelastic
dissipation and anomalous diffusion [12].

Diffusion behaviours are very dependent on the environment of the diffus-
ing particles. There are limitations in capturing the diffusion processes in
complex and disordered media using only constant-order fractional deriva-
tives [9]. Barriers in disordered media lead to the hindrance or restriction of
molecular movements, which results in varying non-local properties over mul-
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tiple scales [6]. The distributed-order (do) fractional operator, constructed
by integrating the fractional order over a given range, has the potential to
describe behaviours associated with multi-scale memory effects [3]. However,
it is difficult to model the diffusion processes in complex environments by
regarding the diffusion coefficient as a constant. The diffusing media exhibit
various properties such as temperature, permeability and porosity [5]. Variable
diffusion coefficients are more suitable for capturing diffusion complexities in
disordered media. However, the research on do fractional diffusion models
with variable coefficients is still limited.

The limitations of current diffusion models motivates the study of the two-
dimensional do fractional diffusion equation (do-fde) combined with variable
coefficients 0 < P(x, y) ⩽ Pmax on the irregular domain Ω ⊂ R2 :

D
ω(α)
t u(x, y, t) = P(x, y)µ2(β−1)∇2βu(x, y, t) + f(x, y, t) ,

u(x, y, 0) = u0(x, y) , (x, y) ∈ Ω,

u(x, y, t)|∂Ω = 0 , t ∈ [0, T ] ,

(1)

where ∂Ω is the boundary of the two-dimensional domain, and µ, with
0 < µ < µmax, is introduced to preserve the balance of units. The do
operator is D

ω(α)
t and is defined by

D
ω(α)
t u(x, y, t) =

∫ 1

0

τα−1ω(α) 0D
α
t u(x, y, t)dα , (2)

with weight function ω(α) which satisfies 0 <
∫1

0
ω(α)dα < ∞ and ω(α) >

0 , and where τ, with 0 < τ < τmax , preserves the balance of units. The
derivative operator

∇2β :=
∂2β

∂|x|2β
+

∂2β

∂|y|2β
, (3)

for 1/2 < β < 1 is the Riesz fractional operator. For example,

∂2βu(x, y, t)

∂|x|2β
= −

1

2 cos(πβ)

[
RL
a(y)D

2β
x u(x, y, t) + RL

x D2β
b(y)u(x, y, t)

]
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is the Riesz fractional derivative with respect to x which is composed of the
left and right Riemann–Liouville fractional derivatives [8], respectively,

RL
a(y)D

2β
x u(x, y, t) =

1

Γ(2− 2β)

∂2

∂x2

∫ x

a(y)

u(ξ, y, t)

(x− ξ)2β−1
dξ ,

RL
x D2β

b(y)u(x, y, t) =
(−1)2

Γ(2− 2β)

∂2

∂x2

∫b(y)

x

u(ξ, y, t)

(ξ− x)2β−1
dξ ,

where a(y) and b(y) are the lower and upper boundaries of an irregular
domain. The Caputo fractional derivative [8] is defined as

0D
α
t u(x, y, t) =

1

Γ(1− α)

∫ t

0

(t− ξ)−α ∂

∂ξ
u(x, y, ξ)dξ , (4)

for 0 < α < 1 .

It is challenging to derive analytical solutions of fractional partial differential
equations (1) (fpdes) with do operators [3]. Efficient and robust numerical
methods needs to be explored to solve them. In this research, the integral
in the do operator (2) is first transformed into a multi-term form using
Simpson’s rule [2]. Then we employ the L2-1σ formula [1] as an approximation
of the Caputo fractional derivative (4). The L2-1σ formula has been widely
used in solving fpdes and has the advantage of high order accuracy [4]. The
space Riesz fractional operator (3) is discretised by the finite element method
(fem) [14] which is efficient in dealing with fractional systems in irregularly
shaped domains [13]. However, there is little research on solving do fractional
models using the L2-1σ formula combined with the fem.

In this study, a generalised fractional framework (do-fde) is developed by
introducing the do operator and variable diffusion coefficients to simulate
anomalous diffusion in disordered media. In Section 2, the generalised do-fde
is solved numerically by employing Simpson’s rule, the L2-1σ formula and
the fem. Then in Section 3, a numerical example is performed to verify the
effectiveness of the proposed numerical schemes. Finally, some conclusions
are drawn in Section 4.
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2 Numerical techniques
This section develops numerical schemes for solving the do-fde efficiently.

2.1 Time discretisation

The time discretisation is implemented by utilising Simpson’s rule and the
L2-1σ formula. Firstly, Simpson’s rule [2] is employed to discretise the integral
in the do operator (2).

Let h(α) ∈ C4[0, 1] , ∆α = 1/2L , and αj = j∆α for j = 0, 1, . . . , 2L . There
exists a ξ ∈ (0, 1) , such that∫ 1

0

h(α)dα = JS∆αh(α) −
(∆α)4

180
h(4)(ξ) , (5)

where

JS∆αh(α) = ∆α

2L∑
j=0

ηjh(αj) ,

with

ηj =


1/3 , j = 0, 2L ,

2/3 , j = 2, 4, . . . , 2L− 4, 2L− 2 ,

4/3 , j = 1, 3, . . . , 2L− 3, 2L− 1 .

Then denote ∆t = T/N0 and tn = n∆t for n = 0, 1, . . . ,N0 . The L2-1σ
formula [1] is developed by combining the linear interpolation on [tk, tk+1] ,
with 0 ⩽ k < n , and quadratic interpolation on [tk−1, tk+1] , with 1 ⩽ k ⩽
n− 1 , and is used to approximate the time fractional operator. Denote

H(σ) =

2L∑
j=0

∆αηjτ
αj−1ω(αj)

Γ(3− αj)
σ1−αj

[
σ−

(
1−

αj

2

)]
(∆t)2−αj , σ ⩾ 0 .

Lemma 1. [4] There exists a unique positive root

σ∗ ∈
[

min
0⩽j⩽L

{
1−

αj

2

}
, max
0⩽j⩽L

{
1−

αj

2

}]
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that satisfies H(σ) = 0 .

For simplicity, denote σ = σ∗ and suppose u(t) ∈ C3[0, T ] , then the Caputo
fractional derivative (4) at t = tn+σ for n < N0) is discretised to obtain the
L2-1σ formula [1]

0D
α
t u(tn+σ) =

1

Γ(1− α)

[
n∑

k=1

∫ tk

tk−1

u ′(η)dη

(tn+σ − η)α
+

∫ tn+σ

tn

u ′(η)dη

(tn+σ − η)α

]

≈ (∆t)−α

Γ(2− α)

n∑
k=0

s
(α,σ)
n−k [u(tk+1) − u(tk)] := Dα

t u
n+σ ,

(6)

where s
(α,σ)
0 = σ1−α when n = 0 , and when n ⩾ 1 the coefficients satisfy

s
(α,σ)
k =


a
(α,σ)
0 + b

(α,σ)
1 , k = 0 ,

a
(α,σ)
k + b

(α,σ)
k+1 − b

(α,σ)
k , 1 ⩽ k ⩽ n− 1 ,

a
(α,σ)
n − b

(α,σ)
n , k = n ,

(7)

where

b
(α,σ)
k = 1

2−α
[(k+ σ)2−α − (k+ σ− 1)2−α] − 1

2
[(k+ σ)1−α + (k+ σ− 1)1−α] ,

and for k ⩾ 1 ,
a
(α,σ)
k = (k+ σ)1−α − (k+ σ− 1)1−α .

Based on the composite Simpson’s rule (5), from (2) we obtain

D
ω(α)
t u(x, y, t) = JS∆α

[
τα−1ω(α) 0D

α
t u(x, y, t)

]
+ RS

∆α , (8)

where
RS
∆α = C̃(∆α)4 max

ξ∈(0,1)

∣∣∂4
ξ

[
τξ−1ω(ξ) 0D

ξ
tu(x, y, t)

]∣∣ ,
with C̃ a constant.
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Denote un+σ as the numerical solution of the function u(x, y, t) at t =
tn+σ , for n = 0, 1, . . . ,N0 − 1. With the combination of equation (5) and
equation (6), the do fractional operator (2) is approximated as

JS∆α
[
τα−1ω(α) 0D

α
t u(tn+σ)

]
≈ JS∆α

(
τα−1ω(α)Dα

t u
n+σ

)
=

n∑
k=0

ŝ
(n+1)
k (uk+1 − uk) := Dα

t u
n+σ,

(9)

where

ŝ
(n+1)
k =

2L∑
j=0

W(∆t,∆α)
αj

s
(αj,σ)
n−k , k = 0, 1, . . . , n ,

with the coefficient

W(∆t,∆α)
αj

= ∆αηjτ
αj−1ω(αj)

(∆t)−αj

Γ(2− αj)
.

In equation (9), Dα
t u

n+σ is the approximation of the multi-term formulation
JS∆α

[
τα−1ω(α) 0D

α
t u(tn+σ)

]
obtained from applying the L2-1σ formula (6).

Lemma 2. [4] Suppose u(t) ∈ C3(0, T) , then we have∣∣JS∆α [τα−1ω(α) 0D
α
t u(tn+σ)

]
−Dα

t u
n+σ

∣∣
⩽ max

0⩽t⩽T
|∂3

tu(t)|

2L∑
j=0

λj

Γ(2− αj)

(
1− αj

12
+

σ

6

)
σ−αj(∆t)3−αj ,

where λj = ∆αηjτ
αj−1ω(αj) .

2.2 Spatial discretisation

The variable diffusion coefficient in equation (1) give rise to some challenges
in implementing the discretisation of the diffusion term. Following Xu et
al. [13], we divide both sides of equation (1) by the variable coefficient P(x, y)
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to tackle this issue. This technique provides the possibility for employing
the important Lemma 3, which decreases the order of the space fractional
derivative. Hence, the coefficient P(x, y) is incorporated in the time fractional
derivative term and the source term in the fully discrete scheme. Then, both
sides of the fully discrete form are multiplied by the coefficient P(x, y) in
the numerical computation process (returning to the original form of the
model). Thus, in the matrix system, the coefficient P(x, y) is involved with
the diffusion term and associated with the assembly of the stiffness matrix.

Firstly, we divide both sides of equation (1) by P(x, y) to obtain

D
ω(α)
t u(x, y, t)/P(x, y) = µ2(β−1)∇2βu(x, y, t) + g(x, y, t) , (10)

where g(x, y, t) = f(x, y, t)/P(x, y) . Then define the finite element space

Vh := {vh | vh ∈ C(Ω) ∩Hβ
0 (Ω) , vh|E is linear ∀E ∈ Th and vh|∂Ω = 0} ,

where {Th} is a mesh partition constructed from a number of triangular
elements with h being the maximum length of these triangles.

The irregular domain is defined as

Ω = {(x, y) | a(y) < x < b(y) , c1 < y < d1} or
Ω = {(x, y) | c(x) < y < d(x) , a1 < x < b1} ,

where c1 = min(x,y)∈Ω c(x) , d1 = min(x,y)∈Ω d(x) , a1 = min(x,y)∈Ω a(y) and
b1 = min(x,y)∈Ω b(y) . Then we define the inner product

(u , v) :=

∫d1

c1

∫b(y)

a(y)

u(x, y)v(x, y)dxdy =

∫b1

a1

∫d(x)

c(x)

u(x, y)v(x, y)dydx .
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Lemma 3. [11] If µ ∈ (1/2, 1) , u, v ∈ J2µL,0(Ω) ∩ J2µR,0(Ω) , then(
RL
a(y)D

2µ
x u , v

)
=

(
RL
a(y)D

µ
xu , RL

x Dµ
b(y)v

)
,(

RL
x D2µ

b(y)u , v
)
=

(
RL
x Dµ

b(y)u , RL
a(y)D

µ
xv
)
,(

RL
c(x)D

2µ
y u , v

)
=

(
RL
c(x)D

µ
yu , RL

y Dµ
d(x)v

)
,(

RL
y D2µ

d(x)u , v
)
=

(
RL
y Dµ

d(x)u , RL
c(x)D

µ
yv
)
.

Let un+σ
h ∈ Vh be the numerical solution of u(x, y, t) at t = tn+σ . From the

time discretisation (9), for all vh ∈ Vh the fully discrete variational formulation
is {(

1
P
Dα

t u
n+σ
h , vh

)
+B (un+σ

h , vh) = (gn+σ, vh) ,

uh(0) = φ0h ,
(11)

where gn+σ = g(x, y, tn+σ) and φ0h ∈ Vh is an approximation of u0(x, y) .
Using Lemma 3, the bilinear form is

B(un+σ
h , vh) = cβµ

2(β−1)
[(

RL
a(y)D

β
xu

n+σ
h , RL

x Dβ
b(y)vh

)
+
(

RL
x Dβ

b(y)u
n+σ
h , RL

a(y)D
β
xvh

)
+
(

RL
c(x)D

β
yu

n+σ
h , RL

y Dβ
d(x)vh

)
+
(

RL
y Dβ

d(x)u
n+σ
h , RL

c(x)D
β
yvh

)]
,

where cβ = 1/2 cos(πβ) . According to the interpolated shape function of the
triangular element [10], define a basis function {ϕi(x, y)}

Np

i=1 so that

uh(x, y, tn+σ) ≈
Np∑
i=1

un+σ
i ϕi(x, y) , (12)

where Np is the total number of the grid nodes.

To assemble the matrix system and simplify the calculation of the variable
coefficients, both sides of the fully discrete form are multiplied by P(x, y).
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Taking vh = ϕr(x, y) , with r = 1, 2, . . . ,N , and combining equation (12) and
the fully discrete scheme (11), we have

Np∑
i=1

Dα
t u

n+σ
i (ϕi, ϕr) +

Np∑
i=1

un+σ
i B(Pϕi, ϕr) = (fn+σ, ϕr) , r = 1, 2, . . . ,N ,

where

B(Pϕi, ϕr) = cβµ
2(β−1)

[(
P RL

a(y)D
β
xϕi ,

RL
x Dβ

b(y)ϕr

)
+
(
P RL

x Dβ
b(y)ϕi ,

RL
a(y)D

β
xϕr

)
+

(
P RL

c(x)D
β
yϕi ,

RL
y Dβ

d(x)ϕr

)
+
(
P RL

y Dβ
d(x)ϕi ,

RL
c(x)D

β
yϕr

)]
,

One of these inner products is approximated by [13]

(
P RL

a(y)D
β
xϕi ,

RL
x Dβ

b(y)ϕr

)
=

Ne∑
p=1

∫
ep

P RL
a(y)D

β
xϕi

RL
x Dβ

b(y)ϕr dxdy

≈
Ne∑
p=1

N
p
G∑

q=1

wq

(
RL
a(y)D

β
xϕi|(xq,yq)

)(
RL
x Dβ

b(y)ϕr|(xq,yq)

)
P(xq, yq) ,

where Np
G refers to the total number of Gauss points in a triangular element ep,

and wq are their corresponding weights.

Let un+σ
i = σun+1

i − (1 − σ)un
i in the bilinear form, then the fully discrete

scheme is transformed into the matrix system

n∑
k=0

ŝ
(n+1)
k A(Uk+1 −Uk) +K[σUn+1 + (1− σ)Un] = Fn+σ, (13)

where Ari = (li , lr) is the mass matrix, Kri = B(Pli , lr) is the stiffness matrix,
U = [un

1 , u
n
2 , . . . , u

n
NP

]T and Fn+σ = [(fn+σ, l1), (f
n+σ, l2), . . . , (f

n+σ, lN)]
T .
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3 Numerical example and discussions
This section gives a numerical example to verify the effectiveness and reliability
of the developed numerical methods.

We investigate the two-dimensional do fractional dynamic system (1) on the
circular domain Ω = {(x, y) | x2 + y2 < 1} with initial condition u(x, y, 0) =
(x2 + y2 − 1)2/10 . Consider P(x, y) = exp[0.001(x− y)] , T = 1 , τ = µ = 1

and ω(α) = Γ(5− α)/Γ(5) . Then the source term is

f(x, y, t) =
0.1

ln t
(t4 − t3)(x2 + y2 − 1)2 + 0.1(t4 + 1)P1(x, y)[q1(x, a0, b0)

+ 2(y2 − 1)q2(x, a0, b0) + (y2 − 1)2q3(x, a0, b0)

+ q1(y, c0, d0) + 2(x2 − 1)q2(y, c0, d0) + (x2 − 1)2q3(y, c0, d0)] ,

where

a0 = −
√

1− y2 , b0 =
√

1− y2 , c0 = −
√
1− x2 , d0 =

√
1− x2 ,

q1(r, a, b) =
RL
a D2β

r (r4) + RL
r D2β

b (r4) , q2(r, a, b) =
RL
a D2β

r (r2) + RL
r D2β

b (r2) ,

q3(r, a, b) =
RL
a D2β

r (1) + RL
r D2β

b (1) , P1(x, y) = P(x, y)µ2(β−1)/cβ .

The exact solution of this example is

u(x, y, t) = 1
10
(t4 + 1)(x2 + y2 − 1)2 .

Table 1 shows the L2 error and convergence order of various space meshes
with β = 0.80 , L = 100 and ∆t = 1/1000 at t = 1 . Results demonstrate
that second-order accuracy of the L2 error is obtained. In Table 2 the L2 error
of the time discretisation achieves second-order convergence with β = 0.90 ,
L = 100 and ∆t ≈ h at t = 1 . The results suggest that the developed
numerical methods are reliable for efficiently solving the fractional dynamic
model.
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Table 1: The L2 error and the corresponding convergence order of the space
discretisation with β = 0.85 , L = 100 and ∆t = 1/1000 at t = 1 .

h L2 error Order
4.4846× 10−1 1.01× 10−2 −
2.8917× 10−1 3.31× 10−3 2.54

1.6444× 10−1 1.02× 10−3 2.08

8.6550× 10−2 2.64× 10−4 2.11

7.1216× 10−2 1.74× 10−4 2.13

Table 2: The L2 error and convergence order of the time discretisation with
∆t ≈ h , β = 0.90 and L = 100 at t = 1 .

∆t h L2 error Order
1/2 4.4846× 10−1 2.30× 10−2 −
1/6 1.6444× 10−1 2.90× 10−3 1.89

1/11 8.6550× 10−2 8.62× 10−4 2.00

1/14 7.1216× 10−2 5.46× 10−4 1.89

1/21 4.5873× 10−2 2.44× 10−4 1.98

4 Conclusions
In summary, this research establishes a new fractional diffusion model by
introducing the do fractional operator and variable diffusion coefficients to
further describe diffusion complexity. Simpson’s rule is utilised to transform
the integral in the do operator into a multi-term form. We approximate the
Caputo fractional derivative with the L2-1σ formula. Then applying the fem
for spatial discretisation, the fully discrete formulation is constructed. Finally,
a numerical example is provided and the validity of numerical methods is
discussed. This generalised do-fde for a problem with variable diffusion
coefficients may provide more possibilities for capturing anomalous diffusion
with multi-scale properties in disordered media.
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