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Abstract

We present an efficient data-driven offline/online Bayesian algorithm
for uncertainty quantification (uq) in the induced scattered field when a
time-harmonic incident wave interacts with an uncertain heterogeneous
medium. The incident wave of interest need not be known in advance,
and the uncertainty is informed by noisy scattering data obtained from
other incident waves impinging on the medium. Our uq algorithm is
accelerated by a novel stochastic reduced order model (rom) based on
the T-matrix, and the rom is independent of both the incident wave,
and other incident waves used to generate the data. This important
property allows the model to be set up offline.

doi:10.21914/anziamj.v64.17965, © Austral. Mathematical Soc. 2023. Published
2023-11-27, as part of the Proceedings of the 20th Biennial Computational Techniques and
Applications Conference. issn 1445-8810. (Print two pages per sheet of paper.) Copies of
this article must not be made otherwise available on the internet; instead link directly to
the doi for this article.

https://doi.org/10.21914/anziamj.v64.17965


Contents C100

Contents
1 Introduction C100

2 A stochastic T-matrix reduced order model C103

3 Uncertainty quantification of wave model C107

4 Numerical results C109

1 Introduction
We consider the interaction of time harmonic incident waves uinc with a
heterogeneous medium occupying a bounded region D ⊆ R2 , with real
refractive index n. The non-absorbing medium, with n(x) =

√
1−m(x) for

x ∈ D , is characterised by its contrast function m with support contained in D

(ensuring that the refractive index in the exterior free-space Dc := R2 \ D

is constant). Here, D = D ∪ ∂D , with ∂D being the boundary of the
domain D. Interaction of the incident wave (from Dc) with the medium
induces a scattered wave us such that the total wave u = uinc + us satisfies
the Helmholtz equation

∆u(x) + k2(1−m)u(x) = 0 , x ∈ R2 . (1)

Here k = 2π/λ is the wavenumber in the unbounded region Dc, and λ the
incident wavelength. The scattered field us is also required to satisfy the
Sommerfeld radiation condition [5, eq. (3.108)].

We focus on uncertainty quantification for the far field of us when the contrast
function m is uncertain, conditioned on the far field data obtained for certain
incident and observation directions. The far field of interest is induced by an
incident plane wave with direction different, in general, to the incident waves
for which the data is obtained. The far field u∞ is defined in relation to the
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scattered wave as

us(x) =
eikr
√
r
[u∞(x̂) +O(1/r)] , (2)

where r = |x| . The limit holds uniformly with respect to the observation
direction x̂ = x/r ∈ ∂B , where ∂B ⊆ R2 denotes the set of all directions.

In Figure 1 we illustrate a model configuration that has an incident wave
impinging on the medium with direction d0 associated with the data, and
a second incident wave with direction d∗ associated with the quantity of
interest. Such configurations are simple models for medical applications in
which ultrasound is focused, and the focusing takes account of the low-contrast
heterogeneity of the body tissue through which the ultrasound propagates [16],
which must be inferred through data.

The uncertainty quantification problem in this work is closely related to the
inverse medium problem, and we refer to the most recent edition of the book
by Colton and Kress for the state of the art in this subject [5]. Typically the
forward problem (1) is solved using coupled fem-bem algorithms [14], the
Lippmann–Schwinger equation [13] or the Born approximation [2, 4]. The
Born approximation [5, Section 8.4]

v∞(x̂ ; m) = −k2

∫
D

G∞(x̂,y)m(y)uinc(y)dy , x̂ ∈ ∂B , (3)

gives an approximation to the far field u∞ that is valid when the contrast
c = supx∈D |m(x)| is small, or for low wavenumber. Here

G∞(x̂,y) =
1+ i
4
√
πk

e−ikx̂·y , (4)

is derived from the free-space Green’s function of the Helmholtz equation,
and v∞(· ; m) in (3) explicitly indicates dependence of the far field on m. In this
work, we assume that the low-contrast medium satisfies (ka)2c ≪ 2 , where a

denotes the radius of D, so that the Born approximation (3) is valid and
approximation results of Colton and Kress [5, Section 8.2] can be applied. The
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Figure 1: Schematic showing a heterogeneous medium occupying D, with
boundary ∂D, illuminated by an incident wave with direction d0 (associated
with the far field data) and an incident wave with direction d∗ (associated
with the quantity of interest).

Born approximation is considered to be sufficient for several inverse problem
applications [5], including flaw characterization using ultrasound [18]. In the
next section we describe an efficient method to use v∞(· ; m) to efficiently
construct an approximation to u∞(x̂) for any observation direction x̂.

The key idea in this work is to use a stochastic counterpart of the T-matrix [8]
to facilitate computing the uncertain far field from the Born approximation
without knowing the incident and observation directions in advance. In
Section 2 we describe a T-matrix-based rom for computing the far field.
In Section 3 we use the T-matrix for efficiently sampling the data-informed
posterior distribution for the far field of interest. In Section 4 we demonstrate
our algorithm by performing uncertainty quantification for a challenging test
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problem with a piecewise constant heterogeneous medium.

2 A stochastic T-matrix reduced order model
For simplicity, we let our quantity of interest be the far field u∞(x̂) induced
by the incident wave uinc(x) = eikx·d∗

with arbitrarily chosen, but known,
direction d∗. Our uncertainty quantification algorithm for u∞(x̂) has two
parts. The first part involves offline construction of a reduced order model
based on deterministic T-matrices associated with an ansatz of the contrast
function. The key here is that such T-matrices can be constructed offline. The
second part involves fast online uncertainty quantification for u∞(x̂), through
uncertain coefficients of the ansatz and associated stochastic T-matrix. The
observation directions x̂ and the incident wave direction d∗ are not required
for the first part of the algorithm, and once constructed offline, the reduced
order model can be used for any x̂ and d∗.

The deterministic T-matrix derivation is based on the idea that for a fixed and
known refractive index, the wave model is governed by the linear Helmholtz
operator transforming an input incident wave into an associated radiating
scattered field. Through series expansions of the incident and scattered
fields using classical regular wave functions (involving the Bessel functions)
and radiating wave functions (involving the Hankel functions), respectively,
the model is equivalently considered to be governed by an infinite T-matrix
transforming the infinite number of coefficients in the incident wave expansion
into those in the scattered field expansion. The far field series expansion of the
wave model is obtained by taking the far field of the radiating wave functions
(that are stable complex exponentials) and hence the T-matrix can also be
considered as an operator transforming the incident field expansion coefficients
into those of the far field. For a stable construction of the T-matrix and
key properties, including the configuration shape independent convergence of
the truncated-expansions-based T-matrix, we refer to Ganesh, Hawkins and
Hiptmair [9], Ganesh and Hawkins [7] and references therein.
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Our offline algorithm is based on the regular wavefunction expansion of the
incident wave as

uinc(x) =

∞∑
ℓ=−∞bℓJ|ℓ|(kr)e

iℓθ , (5)

where we use polar coordinates x = (r cos θ, r sin θ) with origin 0, and we
assume that 0 ∈ D . Here Jℓ is the Bessel function of order ℓ. For incident
plane waves uinc(x) = eikx·d , with wave direction d = (cosϕ, sinϕ) , the
input expansion coefficients are known analytically [5, Equation (3.112)],

bℓ = i|ℓ|e−iℓϕ . (6)

The corresponding expansion, with unknown coefficients, of the far field is

u∞(x̂) =

∞∑
ℓ=−∞aℓ

√
1

πk
(−i)|ℓ|(1− i)eiℓθ , (7)

and the vector of expansion coefficients (aℓ) is obtained from the vector of
incident wave coefficients (bℓ) by

(aℓ) = T(bℓ) , (8)

where T = [tℓ ′ℓ] is the T-matrix of the scatterer [8]. The entries in the
T-matrix are given by Ganesh and Hawkins [6, 8] as

tℓ ′ℓ =
1

4

√
k

π
i|ℓ

′|(1+ i)
∫ 2π

0

v∞ℓ (x̂ ; m) e−iℓ ′θ dθ , (9)

where x̂ = (cos θ, sin θ) . Here we use the Born approximation

v∞ℓ (x̂ ; m) = −k2

∫
D

G∞(x̂,y)m(y)uinc
ℓ (y)dy , x̂ ∈ ∂B , (10)

to compute the far field induced by the incident wave uinc
ℓ (y) = J|ℓ|(kρ)e

iℓϕ ,
and make use of polar coordinates y = (ρ cosϕ, ρ sinϕ) .
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We introduce an ansatz for the uncertain contrast function

m(y) =

M∑
j=1

µjmj(y) , y ∈ D , (11)

where the coefficients µj are uncertain, and mj for j = 1, . . . ,M are appropriate
deterministic basis functions. Our motivation for the above ansatz is that
through the Spectral Theorem applied for a compact normal Hilbert–Schmidt
(h-s) integral operator on L2(D), the classical Kosambi–Karhunen–Loève
(kkl, but widely abbreviated as kl) theorem provides a robust theoretical
foundation for a series expansion of a stochastic process (such as m) using a
class of orthogonal basis functions that are eigenfunctions of the h-s integral
operator, with associated h-s kernel (defined on D×D) corresponding to the
covariance of the stochastic process. In practice, the kkl expansion needs to
be truncated, leading to an approximate kkl ansatz with appropriate basis
functions [e.g. 10, and references therein] in which localized kkl eigenfunctions
with sub-domain covariances are used for a stochastic model with epistemic
uncertainties.

Except for the case of simple geometries D (typically with harmonics as
eigenfunctions), finding the kkl eigenfunction solutions of the h-s kernel-
based second-kind Fredholm integral equation (fie or equivalent pde) requires
numerical approximations of the fie/pde in finite dimensional subspaces
of L2(D) [10]. Finite dimensional subspaces spanned by splines or radial basis
functions (such as thin plate splines) have been widely used to approximately
solve fies and pdes. Thus, in general, a practical truncated kkl-type ansatz
is spanned by basis functions used in standard numerical methods for fie/
pde. Even for the case of simple geometries for which analytical global
harmonic eigenfunctions are known, use of localized basis functions in kkl-
type expansions for representing uncertain random fields may be preferred.
For example, Bachmayr and Djurdjevac [1, and references therein] show the
advantages of using a non-standard kkl-type basis ansatz even for the simple
sphere geometry.

Our goal is to develop an approach that can be applied to complex domains
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and in this article we use a mixed finite element approximation to thin plate
splines (tps) [17] as basis functions in the ansatz (11). Quantifying the
uncertain coefficients (as random variables) is data-driven through an offline/
online Bayesian framework, and we avoid solving the kkl eigenvalue problem.
For a pde-based proof on the tps interpolation approximation properties
with improved error estimates, we refer to Lohndorf and Melenk [15, and
references therein].

In this article, evaluation of the tps is restricted to D, and the main challenge
is to choose the control points. We use the nodes of a coarse triangular mesh
tessellation of D, noting that such tessellations can be computed easily even
for complex domains. Using the linearity of (9)–(10) with respect to m, we
write the model-associated stochastic T-matrix as

T =

M∑
j=1

µjT
(j) , (12)

where T (j) = [t
(j)
ℓ ′ℓ ] is the deterministic T-matrix associated with the known

basis functions mj for j = 1, . . . ,M , where

t
(j)
ℓ ′ℓ =

1

4

√
k

π
i|ℓ

′|(1+ i)
∫ 2π

0

v∞ℓ (x̂ ; mj) e
−iℓ ′θ dθ . (13)

In general, the T-matrix is not linear with respect to the contrast function,
but linearity of T as a function of the basis functions holds here because the
Born approximation used to compute the T-matrix entries in (10)–(13) is
linear in m, and hence T is linear in m as well.

In practice the series (5)–(7) and the T-matrix are truncated for −N ⩽ ℓ, ℓ ′ ⩽
N where N is a truncation parameter. In this work we compute N based on
the wavenumber using Wiscombe’s formula [19]. Based on the truncation
parameter N, the integral in (13) is approximated to high accuracy using
the 2N+ 2 point rectangle rule∫ 2π

0

v∞ℓ (x̂ ; mj)e
−iℓ ′θ dθ ≈

2N+1∑
i=0

νiv
∞
ℓ ((cos θi, sin θi) ; mj)e

−iℓ ′θi , (14)
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where the rectangle points are θi = 2πi/(2N + 2) and the weights are
νi = π/(N + 1) . Thus the T-matrices T (j) are computed using far-field
data from the fixed observation angles θi for i = 0, . . . , 2N+ 1 , but they can
then be used to efficiently compute the far field for any observation angle θ,
and indeed for any incident wave direction d∗.

3 Uncertainty quantification of wave model
We model the parameters µj in (11) and (12), for j = 1, . . . ,M , as random
variables in a probability space Ω. Using Bayes’ Theorem, the posterior
probability distribution for µ = (µj) , informed by far field data f, satisfies

p(µ, σ | f) ∝ p(f | µ, σ)p(µ)p(σ) , (15)

where p(µ) is the prior distribution for µ, which encapsulates any a-priori
knowledge or assumptions about the contrast function m, and p(σ) is the
prior distribution for the noise σ. We assume that the µj for j = 1, . . . ,M are
independent with Gaussian distributions having zero mean and variance ω2,
so that

p(µ) =
1

(2πω2)M/2
exp

(
−
∥µ∥22
2ω2

)
. (16)

The contrast function m is real because the medium is non-absorbing. It is
convenient to enforce real coefficients µ by using real-valued data obtained by
splitting n-dimensional complex-valued far field data into real and imaginary
components. Consequently, we assume the real valued data f ∈ R2n includes
Gaussian noise in each component, having zero mean and variance σ2. Then
the likelihood function is

(f | µ, σ) =
1

(2πσ2)n
exp

(
−
∥Cµ− f∥22

2σ2

)
, (17)

where the 2n×M matrix C = [cij] is

c2i−1,j = Re v∞(x̂i ; mj) , c2i,j = Im v∞(x̂i ; mj) , i = 1, . . . , n . (18)
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Here v∞(· ; mj) is the far field induced by the incident wave uinc(x) = eikx·d0

and x̂1, . . . , x̂n ∈ ∂B are the observation directions for the data. The far field
data f is constructed similarly. We sample (µ, σ) from the posterior (15) using
the Gibbs sampler [3] with a log-uniform distribution for σ. The samples of µ
are then samples of the marginal distribution (with σ integrated out).

Although v∞(x̂i ; mj) can be computed directly from (3) using numerical
evaluation of the integral, it is more efficient to use the T-matrix in (12),
which—in contrast to (3)—is independent of the observation directions and
hence can be computed offline beforehand. In particular, using the T-matrix
and the expansion (7) we have

c2i−1,j + c2i,ji =
N∑

ℓ=−N

(
T (j)(bℓ)

)
ℓ

√
1

πk
(−i)|ℓ|(1− i)eiℓθi . (19)

In the numerical experiments in Section 4 we exploit that the T-matrix
is also independent of the incident wave direction, which affects only the
coefficients (bℓ) in (19). Thus data for incident waves with several different
incident directions is incorporated efficiently.

The maximiser µmap of the posterior distribution (15) minimises the functional

∥Cµmap − f∥22 + τ2∥µmap∥22 , (20)

where τ = σ/ω , and is computed as the solution of(
C∗C+ τ2I

)
µmap = C∗f . (21)

Then µmap is used to compute the associated quantity of interest v∞(x̂ ;µ)
induced by the incident plane wave uinc(x) = eikx·d∗

. Here we write v∞(x̂ ;µ)
for v∞(x̂ ; m) where m is obtained from µ using (11) and, using the T-matrix,

v∞(x̂ ;µ) =

N∑
ℓ=−N

aℓ

√
1

πk
(−i)|ℓ|(1− i)eiℓθ , (22)
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with equations (8) and (12), and where (bℓ) is the vector of expansion coeffi-
cients of uinc given by (6).

Samples of (15) computed using the Gibbs sampler provide more information
about the posterior distribution than µmap alone. The samples are used to
compute statistical properties of the quantity of interest such as the mean

E[v∞(x̂ ; ·)] ≈ 1

m

m∑
i=1

v∞(θ ;µi) , (23)

where µ1, . . . ,µm are samples from (15). Statistical properties of the contrast
function m given by (11) may also be of interest.

4 Numerical results
We demonstrate our algorithm in Matlab with noisy test data obtained by
simulating scattering by three small penetrable homogeneous scatterers with
contrast given by the function m(x) = 10−2 for x inside the scatterers and
zero for x exterior to the scatterers. The scatterers are inside the unit disk D

and the wavenumber is k = 8 , so that the diameter of D is about 2.5λ and
the diameter of the scatterers is about 0.5λ . The far field of the medium is
computed to high accuracy using the MieSolver package [11], and Gaussian
noise with standard deviation 1% is added to obtain the data, which is publicly
available [12]. In MieSolver we apply transmission boundary conditions
on the interfaces of the scatterers with continuity of the total field and its
normal derivative. The contrast function is visualised in Figure 2(left).

We use the ansatz (11) for the data-informed approximation to the con-
trast function. The basis functions mj are thin plate splines constructed to
approximately interpolate at 90 points on a coarse tessellation of D. The
smoothness of the tps, one of which is visualised in Figure 3, provides a
smooth interpolant throughout D with only a small number of control points,
with error estimates given by Löhndorf and Melenk [15]. The splines corre-
sponding to the 57 interior control points are used for the ansatz (11), and m
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Figure 2: Visualisation of the target contrast function m(x) (left); and the
expected value of the reconstruction (right) with the thin plate spline control
points marked.

implicitly approximates zero at the boundary control points. The offline/
online uq algorithm in Section 3 is therefore undertaken over an M = 57

dimensional stochastic space. We sample the posterior distribution using the
Gibbs sampler with ω = 5× 10−3 in the prior distribution (16).

The T-matrices T (j) in Section 2 are computed using the tmatrom package [8]
and the Born approximation integrals in (10) are computed using quadrature
rules defined on a triangular mesh tessellation of D. The integrands in the Born
approximation are smooth because the thin plate spline basis functions mj

are smooth. The test problem used here is challenging because the piecewise-
constant target contrast function is discontinuous and our ansatz (11) is
continous. However, the piecewise constant contrast function allows us to use
the MieSolver algorithm, so that the solver we use to generate the data
is completely independent of the solver we use for the uq and there is no
“inverse crime” [5, Page 179].

In Figure 4 we visualise the uq performed using s = 10 000 samples of
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Figure 3: Visualisation of a typical thin plate spline mj with the control
points marked.

the posterior distribution for an incident plane wave with direction d∗ =
(cosπ/6, sinπ/6) by plotting the expected value (23) and the two-sigma
confidence region. The far field associated with the maximiser µmap of the
posterior distribution is also shown. The figure shows excellent agreement
between the predicted far field and the true value computed using MieSolver.
The incident wave directions used to generate the data are indicated in the
figure and highlight that incident wave direction d∗ was not one of the these.
In Figure 2(right) we visualise the expected value of the noisy data-driven
uncertain contrast function computed using the same samples.
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Figure 4: Uncertainty quantification for the real part (top); and imaginary
part (bottom) of the far field induced by the uncertain medium. The expected
value is shown in red, with plus/minus two standard deviations marked
with red shading. The value associated with the maximum of the posterior
distribution is shown in black (dashed line). The true far field is shown in blue.
The incident wave and observation directions used for the data are indicated
in blue. The incident wave direction used for uncertainty quantification is
indicated in red.



References C113

References
[1] M. Bachmayr and A. Djurdjevac. “Multilevel representations of

isotropic Gaussian random fields on the sphere”. In: IMA J. Numer.
Anal. 43.4 (2023), pp. 1970–2000. doi: 10.1093/imanum/drac034
(cit. on p. C105).

[2] C. Borges and G. Biros. “Reconstruction of a compactly supported
sound profile in the presence of a random background medium”. In: Inv.
Prob. 34, 115007 (2018). doi: 10.1088/1361-6420/aadbc5 (cit. on
p. C101).

[3] G. Casella and E. I. George. “Explaining the Gibbs Sampler”. In: Am.
Stat. 46 (1992), pp. 167–174. doi: 10.1080/00031305.1992.10475878
(cit. on p. C108).

[4] Y. Chen. In: Inv. Prob. 13 (1997), pp. 253–282. doi:
10.1088/0266-5611/13/2/005 (cit. on p. C101).

[5] D. Colton and R. Kress. Inverse Acoustic and Electromagnetic
Scattering Theory. 4th. Springer, 2019. doi:
10.1007/978-3-030-30351-8 (cit. on pp. C100, C101, C102, C104,
C110).

[6] M. Ganesh and S. C. Hawkins. “A far-field based T-matrix method for
two dimensional obstacle scattering”. In: Proceedings of the 9th
Biennial Engineering Mathematics and Applications Conference,
EMAC-2009. Ed. by P. Howlett, M. Nelson, and A. J. Roberts. Vol. 51.
ANZIAM J. 2010, pp. C215–C230. doi:
10.21914/anziamj.v51i0.2581 (cit. on p. C104).

[7] M. Ganesh and S. C. Hawkins. “A numerically stable T-matrix method
for acoustic scattering by nonspherical particles with large aspect
ratios and size parameters”. In: J. Acoust. Soc. Am. 151 (2022),
pp. 1978–1988. doi: 10.1121/10.0009679 (cit. on p. C103).

https://doi.org/10.1093/imanum/drac034
https://doi.org/10.1088/1361-6420/aadbc5
https://doi.org/10.1080/00031305.1992.10475878
https://doi.org/10.1088/0266-5611/13/2/005
https://doi.org/10.1007/978-3-030-30351-8
https://doi.org/10.21914/anziamj.v51i0.2581
https://doi.org/10.1121/10.0009679


References C114

[8] M. Ganesh and S. C. Hawkins. “Algorithm 975: TMATROM—A
T-matrix reduced order model software”. In: ACM Trans. Math. Softw.
44, 9 (2017), pp. 1–8. doi: 10.1145/3054945 (cit. on pp. C102, C104,
C110).

[9] M. Ganesh, S. C. Hawkins, and R. Hiptmair. “Convergence analysis
with parameter estimates for a reduced basis acoustic scattering
T-matrix method”. In: IMA J. Numer. Anal. 32 (2012), pp. 1348–1374.
doi: 10.1093/imanum/drr041 (cit. on p. C103).

[10] M. Ganesh, S. C. Hawkins, A. M. Tartakovsky, and R. Tipireddy. “A
stochastic domain decomposition and post-processing algorithm for
epistemic uncertainty quantification”. In: Int. J. Uncertain. Quant. 13
(2023), pp. 1–22. doi:
10.1615/Int.J.UncertaintyQuantification.2023045687 (cit. on
p. C105).

[11] S. C. Hawkins. “Algorithm 1009: MieSolver—An object-oriented Mie
series software for wave scattering by cylinders”. In: ACM Trans. Math.
Softw. 46, 19 (2020), pp. 1–28. doi: 10.1145/3381537 (cit. on
p. C109).

[12] S. C. Hawkins. Noisy far-field data. Published online 12th August 2023.
doi: 10.5281/zenodo.8240111 (cit. on p. C109).

[13] T. Hohage. “On the numerical solution of a three-dimensional inverse
medium scattering problem”. In: Inv. Prob. 17 (2001), pp. 1743–1763.
doi: 10.1088/0266-5611/17/6/314 (cit. on p. C101).

[14] A. Kirsch and P. Monk. “An analysis of the coupling of finite-element
and Nyström methods in acoustic scattering”. In: IMA J. Numer. Anal
14 (1994), pp. 523–544. doi: 10.1093/imanum/14.4.523 (cit. on
p. C101).

[15] M. Löhndorf and J. M. Melenk. “On Thin Plate Spline Interpolation”.
In: Spectral and High Order Methods for Partial Differential Equations
ICOSAHOM 2016. Ed. by M. Bittencourt, N. Dumont, and
J. Hesthaven. Vol. 119. Lecture Notes in Computational Science and

https://doi.org/10.1145/3054945
https://doi.org/10.1093/imanum/drr041
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2023045687
https://doi.org/10.1145/3381537
https://doi.org/10.5281/zenodo.8240111
https://doi.org/10.1088/0266-5611/17/6/314
https://doi.org/10.1093/imanum/14.4.523


References C115

Engineering. Springer, 2017, pp. 451–466. doi:
10.1007/978-3-319-65870-4_32 (cit. on pp. C106, C109).

[16] T. D. Mast. “Empirical relationships between acoustic parameters in
human soft tissues”. In: Acoust. Res. Lett. Online 1 (2000), pp. 37–42.
doi: 10.1121/1.1336896 (cit. on p. C101).

[17] L. Stals. “Efficient Solution Techniques for a Finite Element Thin Plate
Spline Formulation”. In: J. Sci. Comput. 63 (2015), pp. 374–409. doi:
10.1007/s10915-014-9898-x (cit. on p. C106).

[18] K. C. Tam. “Two-dimensional inverse Born approximation in ultrasonic
flaw characterization”. In: J. Nondestruct. Eval. 5 (1985), pp. 95–106.
doi: 10.1007/BF00566959 (cit. on p. C102).

[19] W. J. Wiscombe. “Improved Mie Scattering Algorithms”. In: Appl. Opt.
19 (1980), pp. 1505–1509. doi: 10.1364/AO.19.001505 (cit. on
p. C106).

Author addresses

1. M. Ganesh, Department of Applied Mathematics and Statistics,
Colorado School of Mines, Golden Colorado 80410, USA.

2. S. C. Hawkins, School of Mathematical and Physical Sciences,
Macquarie University, New South Wales 2109, Australia.

3. N. Kordzakhia, School of Mathematical and Physical Sciences,
Macquarie University, New South Wales 2109, Australia.

4. L. Stals, Mathematical Sciences Institute, Australian National
University, Canberra, Australia.

https://doi.org/10.1007/978-3-319-65870-4_32
https://doi.org/10.1121/1.1336896
https://doi.org/10.1007/s10915-014-9898-x
https://doi.org/10.1007/BF00566959
https://doi.org/10.1364/AO.19.001505

	Introduction
	A stochastic T-matrix reduced order model
	Uncertainty quantification of wave model
	Numerical results

