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Abstract

The perfectly matched layer (pml) is a perfectly non-reflecting layer
that simulates the absorption of waves. However, in practice, once the
pml is truncated and discretised, the pml is no longer a completely
non-reflecting medium. In this article we discuss how to derive optimal
pml parameters for the one dimensional acoustic wave equation. Using
a multi-block strategy, we present a numerical implementation of the
pml that completely eliminates the pml errors. Numerical experiments
are presented to verify the analysis.

doi:10.21914/anziamj.v64.17968, © Austral. Mathematical Soc. 2023. Published
2023-11-07, as part of the Proceedings of the 20th Biennial Computational Techniques and
Applications Conference. issn 1445-8810. (Print two pages per sheet of paper.) Copies of
this article must not be made otherwise available on the internet; instead link directly to
the doi for this article.

https://doi.org/10.21914/anziamj.v64.17968


Contents C79

Contents
1 Introduction C79

2 The pml for the acoustic wave equation C81
2.1 Perfect matching and pml modelling error . . . . . . . . . C82
2.2 Stability of the pml . . . . . . . . . . . . . . . . . . . . . . C84

3 Numerical approximation C86

4 Numerical experiments C90

5 Conclusion C92

A Appendix C93
A.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . C93
A.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . C93
A.3 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . C94
A.4 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . C95

1 Introduction
Generally, wave propagation problems occur in large or unbounded domains.
However, because of limited computational resources, numerical simulations
are always performed in smaller computational domains by introducing artifi-
cial boundaries. Thus, in order to ensure the accuracy of numerical simulations,
efficient and reliable domain truncation schemes are necessary.

The perfectly matched layer (pml) [4, 1, 2] has emerged as an effective
technology to simulate the absorption of waves in numerical wave solvers [10,
13]. The pml is designed to absorb all outgoing waves without reflections,
independent of frequencies and angles of incidence. A desirable attribute
of the pml is that it can be easily approximated using standard numerical
methods [9, 7]. However, in practice, once the pml is truncated and discretised,



1 Introduction C80

the pml is no longer a perfectly absorbing medium. When the pml is used
in computation, the primary sources of errors are numerical reflection errors
introduced by discrete approximations and the pml modelling error caused
by the finite pml width. Numerical reflection errors are mainly caused by the
smoothness properties of the pml damping function across the pml interface.
The modelling error is the residual outgoing wave which is reflected from
the outer pml boundary and travels back through the layer to corrupt the
solution. Therefore, the pml parameters must be tuned and optimised in
order to enable optimal performance of the pml for practical problems.

For some model problems, such as Maxwell’s equations and the acoustic wave
equation, there are precise error formulas for the pml modelling error at the
continuous level [14, 3, 6]. However, numerical error analysis and optimal
pml parameters for discrete pml models have received less attention. There
are only a few exceptions, such as Bermudez et al. [5] who used unbounded
pml parameters for the Helmholtz equation at the discrete level.

In this study we derive optimal pml parameters for the time-dependent
acoustic wave equation in one space dimension. Our main objective is the
derivation of effective pml damping parameters, for discrete approximations
of a finite width pml. For monomial damping profiles we parameterise
the pml damping function such that the pml modeling error is much less
than the machine epsilon for ieee Standard double precision floating-point
arithmetic. The pml parameters are optimal, in terms of efficiency, for a
piece-wise constant profile. The pml is discretised using the summation-by-
parts (sbp) finite difference operators and boundary conditions implemented
using the simultaneous approximation term (sat) [15, 11]. Time integration
is performed using the classical fourth order Runge–Kunta method. However,
for non-smooth damping functions the standard sbp-sat method generates
large pml reflection errors which pollute the solutions everywhere. Using
a multi-block strategy, we derive a stable numerical implementation of the
pml that completely eliminates the pml errors. Numerical experiments are
presented verifying the analysis.
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In Section 2, the pml for the acoustic wave equation is derived. Then perfect
matching of pml, pml modeling error and stability of the pml are discussed.
In Section 3, we consider numerical approximations and prove numerical
stability. Numerical experiments are performed in Section 4, verifying accuracy.
In Section 5 we draw conclusions and suggest possible directions for future
work. The proofs of the theorems presented in this article are in Appendix A.

2 The pml for the acoustic wave equation
Consider the linear acoustic wave equation in one space dimension:

ρ
∂u(x, t)

∂t
+

∂p(x, t)

∂x
= 0 ,

1

κ

∂p(x, t)

∂t
+

∂u(x, t)

∂x
= 0 , (1)

where x ∈ Ω ⊂ R is the spatial variable and t ⩾ 0 denotes the time variable.
The unknowns are the acoustic pressure p and the particle velocity field u.
Here, κ > 0 is the bulk modulus, ρ > 0 is the density of the medium, we also
introduce wave speed c =

√
κ/ρ and acoustic impedance Z = ρc , and define

right-going and left-going characteristics, respectively,

w1 =
1
2
(Zu+ p) , w2 =

1
2
(Zu− p) . (2)

Let us assume that we want to compute the solution of the wave equation on
the negative real line, x ⩽ 0 , and introduce the pml on the positive real line,
x > 0 , to absorb outgoing waves. The Laplace transform is defined by

ũ(x, s) =

∫∞
0

e−stu (x, t) dt , s = a+ ib , ℜs = a > 0 . (3)

First, take the Laplace transform in time of the wave equation (1), and
analytically continue the transformed equation from the real coordinate x to
a complex coordinate x̂, to obtain the Laplace space pml equation

ρsũσ(x̂, s) +
dp̃σ(x̂, s)

dx̂
= 0 ,

1

κ
sp̃σ(x̂, s) +

dũσ(x̂, s)

dx̂
= 0 , (4)
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where ũσ and p̃σ denote the velocity and pressure of the pml in the Laplace
space. The relationship between x and x̂ is

x̂ = x+
1

s

∫ x

0

σ(η)dη ,
dx̂

dx
:= Sx = 1+

σ

s
, (5)

where σ ⩾ 0 is the damping function, with σ = 0 if x ⩽ 0 and σ > 0 if x > 0 .
The pml damping function σ > 0 is a user defined parameter [5, 16, 12] that
simulates the absorption of waves in the pml.

Second, using a coordinate transformation, we transform the pml (4) from
the complex domain x̂ back to the real domain x. Then we invert the Laplace
transform to obtain the pml equation

ρ
∂u

∂t
+

∂p

∂x
= −ρσu ,

1

κ

∂p

∂t
+

∂u

∂x
= −

1

κ
σp , t ⩾ 0 . (6)

The subscripts are omitted for convenience, that is pσ → p and uσ → u .
When σ = 0 in (6) we recover the acoustic wave equation (1).

2.1 Perfect matching and pml modelling error

Perhaps, the most important mathematical property of the pml (6) is perfect
matching. This means that the restriction of the general solution of pml (6)
to the negative real line x ⩽ 0 coincides with the general solution of the
acoustic wave equation (1). To see this, we note that the general solution of
the acoustic wave equation (1) in the Laplace space (for a right-going wave) is

ũ = u0e
− s

cx and p̃ = p0e
− s

cx , ℜs = a > 0 , (7)

where u0, p0 ∈ R and c > 0 is the wave speed. Similarly the general solution
of the pml (4) is

ũσ = u0e
− s

c x̂ and p̃σ = p0e
− s

c x̂ . (8)
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By using equation (5) for the complex coordinate x̂ the general solution (8)
of the pml in terms of x is

ũσ = ũe−Γ(x) , p̃σ = p̃e−Γ(x) , Γ(x) :=

∫ x

0

σ(η)

c
dη , (9)

where Γ(x) is a real, positive continuous and increasing function with Γ(0) = 0

for any σ(η). Since σ = 0 if x ⩽ 0 and σ > 0 if x > 0 , we have

ũσ = ũ , p̃σ = p̃ , ∀x ⩽ 0 . (10)

Thus, the general solution in Laplace space (8) of the pml (6) and the general
solution in Laplace space (7) of the acoustic wave equation (1) coincide for
all x ⩽ 0 , and are perfectly matched by construction. There are no reflections
as waves pass the interface x = 0 .

For the pml to be exact we must chose σ > 0 such that limx→∞ Γ(x) = ∞ .
From (9) we have ũσ(∞) = 0 and p̃σ(∞) = 0 . Thus an infinitely wide pml
is perfectly non-reflecting and exact. However, in computation the pml must
be truncated, resulting in a finite width layer. A finite width pml, although
non-reflecting at the interface, will often yield a modelling error. Thus, when
waves reach the external boundary of the pml at x = δ > 0 and return to
the pml interface at x = 0 , the amplitude of the wave decreases by a factor
of e−2Γ(δ) of its original amplitude. For a pml of finite width δ > 0 the
relative modeling error is

tol = e−2Γ(δ) . (11)

The tolerance tol > 0 is often a user defined input parameter. However, given
the layer width δ > 0 , we parameterise the pml damping function σ > 0

such that Γ(δ) is sufficiently large and the modeling error is tol = e−2Γ(δ) ∼ 0 .
The resulting pml model is perfectly non-reflecting at the interface x = 0

and nearly-exact.

For a finite pml width δ > 0 we choose a suitable damping function σ such
that Γ(δ) is sufficiently large to match the tolerance tol > 0 . We consider the
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standard monomial damping function

σ(x) =

{
0 if x ⩽ 0 ,

d0(x/δ)
n if x > 0 ,

(12)

where the constant d0 > 0 is the damping strength and n ⩾ 0 controls the
smoothness of σ(x) at the interface x = 0 . From (11) and (9) we have

Γ(δ) =
d0

c
× δ

n+ 1
, d0 = c

n+ 1

2δ
× ln

(
1

tol

)
. (13)

2.2 Stability of the pml

We consider the pml (6) in the computational domain Ω = [−L, δ] of length
L+ δ with a pml of width δ > 0 . Again, when σ = 0 in (6) we recover the
acoustic wave equation (1). We augment (6) with the smooth initial condition

u(x, 0) = u0(x) , p(x, 0) = p0(x) , (14)

and the linear boundary conditions

BL(u, p) :=
1− rL

2
Zu+

1+ rL

2
p = 0 , at x = −L , |rL| ⩽ 1 ,

Bδ(u, p) :=
1− rδ

2
Zu−

1+ rδ

2
p = 0 , at x = δ , |rδ| ⩽ 1 , (15)

where the real parameters rδ and rL are boundary reflection coefficients.

Let the energy in the domain be defined by

E(t) =

∫
Ω

(
ρ

2
u2 +

1

2κ
p2

)
dx ,

and introduce the boundary term

bt = u(−L, t)p(−L, t) − u(δ, t)p(δ, t) . (16)
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Theorems 1 and 2 below show that the energy E(t) > 0 is controlled by
the boundary term bt. To be specific the energy E(t) > 0 will not grow
unboundedly if bt ⩽ 0 . In particular, for the boundary conditions (15)
rL = 1 implies p = 0 at x = −L , and rδ = 1 implies p = 0 at x = δ , and
therefore bt = 0 if rL = 1 and rδ = 1 . If rL ̸= 1 and rδ ̸= 1 then

bt = −
(1+ rL)

Z(1− rL)
p2|x=−L −

(1+ rδ)

Z(1− rδ)
p2|x=δ ⩽ 0 .

Therefore, the boundary term is never positive.

The following theorem is proven in Appendix A.1.

Theorem 1. Consider the pml (6) subject to the initial condition (14) and
the boundary conditions (15). Then

dE(t)

dt
= bt − 2

∫ δ

−L

σ

(
ρ

2
u2 +

1

2κ
p2

)
dx ⩽ 0 . (17)

To enable the development of a multi-block strategy we consider the domain
Ω = Ω− ∪ Ω+ , where Ω− = [−L, 0] and Ω+ = [0, δ] . We solve the wave
equation (1) in Ω− and the pml (6) in Ω+, and the solutions are then coupled
through the perfect matching conditions (10) at the interface x = 0 . Denote
the solutions of u and p in the sub-domains Ω± with the superscripts +/− .
The conditions (10) at x = 0 are then expressed as [[u]] := u+ − u− = 0 and
p− = p+ = p . The energy in the sub-domains is

E±(t) =

∫
Ω±

(
σ
ρ

2
(u±)2 +

1

2κ
(p±)2

)
dx .

The following theorem is proven in Appendix A.2.

Theorem 2. Consider the pml (6) subject to the initial condition (14) and
the boundary conditions (15) with |rδ| and |rL| ⩽ 1 . For E(t) = E−(t)+E+(t)



3 Numerical approximation C86

we have

dE(t)

dt
= bt − p[[u]] − 2

∫ δ

0

σ

(
ρ

2
(u+)2 +

1

2κ
(p+)2

)
dx ⩽ 0 . (18)

Since [[u]] = 0 , the energy derivative (18) is equivalent to (17).

3 Numerical approximation
We discretise the domain Ω = [−L, δ] into N grid points with a uniform
spatial step ∆x > 0 . Then

xj = −L+ (j− 1)∆x , ∆x =
L+ δ

N− 1
, j = 1, 2, · · ·N ,

where u = [u1(t), u2(t), · · ·uN(t)]
T denotes the semi-discrete scalar field on

the grid.

Spatial derivatives on the grid are approximated by diagonal-norm operator
D ∈ RN×N [8] such that (Du)j ≈ ∂u/∂x|x=xj and

D = H−1Q , Q+QT = diag(−1, 0, . . . , 0, 1) , H = HT > 0 . (19)

We consider the diagonal norm sbp operators with H = ∆x diag(h1, h2, · · · , hN) ,
where hj > 0 are the weights of a composite quadrature rule. We have

(Du)j =
∂u

∂x

∣∣∣∣
x=xj

+ Tj , (20)

where the truncation error is

Tj =


∆xγβj

∂γ+1u
∂xγ+1

∣∣∣
xj
, 1 ⩽ j ⩽ s or (N− s+ 1) ⩽ j ⩽ N ,

∆xνβj
∂ν+1u
∂xν+1

∣∣∣
xj
, s < j < (N− s+ 1) .

(21)
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Here, βj are mesh independent constants, γ ∈ {1, 2, . . .} is the order of accuracy
of the D operator close to the boundary, and ν ∈ {1, 2, . . .} is the order of
accuracy of the D operator in the interior away from the boundary. For
traditional sbp operators based on central difference stencils, the interior
accuracy is always even, and we have (γ, ν) = (r, 2r) , for r ∈ N . The
parameter s indicates the number of grid points close to the boundary where
lower (rth) order accurate stencils are used. For the traditional sbp operators
used in this study, r = 1, 2, 3 and s = 1, 4, 6 .

A straightforward sbp-sat approximation of the pml (6) subject to the initial
condition (14) and the boundary conditions (15) is

1

κ

dp

dt
+Du = satp −

dx

κ
p , ρ

du

dt
+Dp = satu − ρdxu , (22)

where

satp =
τ11

Z
H−1e1BL(u1, p1) +

τ12

Z
H−1eNBδ(uN, pN) ,

satu = τ21H
−1e1BL(u1, p1) + τ22H

−1eNBδ(uN, pN) ,

are penalty terms weakly implementing the boundary conditions, and

e1 = [1, 0, . . . , 0]T , eN = [0, . . . , 0, 1]T ,

dx = diag(σ(x1), σ(x2), · · · , σ(xN)) .

The real coefficients τkl with k, l = {1, 2} are penalty parameters to be
determined by enforcing stability. Let the discrete energy in the domain be

E(t) =
1

2κ
pTHp+

ρ

2
uTHu > 0 ,

and the numerical boundary term be

btnum = −(1− rL)Zu
2
1 −

(1+ rL)

Z
p2
1 − (1− rδ)Zu

2
N −

(1+ rδ)

Z
p2
N ⩽ 0 .

The following theorem is proven in Appendix A.3.
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Theorem 3. Consider the semi-discrete approximation of the pml (22). If
τ11 = τ21 = τ22 = −1 and τ12 = 1 , then

dE(t)

dt
= btnum − 2

(
1

2κ
pT (dxH)p+

ρ

2
uT (dxH)u

)
⩽ 0 .

Theorem 3 proves the stability of the semi-discrete problem (22). However, the
accuracy of (22) is tied to the truncation error T. From (21) the truncation
error depends on the smoothness of the solution. If u is the solution of the
wave equation, then from (9) the pml solution is uσ = e−Γ(x)u . If we assume
that u is sufficiently smooth, then the smoothness of uσ depends only on the
pml damping function σ(x). For example the first and second derivatives
of uσ are

∂uσ

∂x
= e−Γ

(
∂u

∂x
−

σ

c
u

)
,

∂2uσ

∂x2
= e−Γ

[
∂

∂x

(
∂u

∂x
−

σ

c
u

)
−

σ

c

(
∂u

∂x
−

σ

c
u

)]
.

If the damping σ is discontinuous across the pml interface, then ∂uσ/∂x is
discontinuous and ∂2uσ/∂x

2 does not exist. For an rth order accurate sbp-sat
scheme, we require the existence of (r+ 1)th derivatives of the pml solution
so that the truncation error Tj is defined for every point in the domain. Thus
the damping function must be sufficiently smooth such that σ ∈ Cr(Ω) .
Otherwise, the numerical solution will be polluted by large numerical errors.

A standard sbp-sat method suffers from large numerical errors when the pml
damping is not sufficiently smooth. For non-smooth damping profiles we must
avoid differentiating the solution across the discontinuous interface. Here we
propose a numerical multi-block procedure to eliminate the numerical error
due to lack of smoothness of the pml damping function σ.

We consider the coupled problem Ω = Ω− ∪Ω+ , where Ω− = [−L, 0] and
Ω+ = [0, δ] , with each sub-block Ω± discretised using a uniform spatial
step ∆x > 0 , and with boundary conditions (15). At the pml interface x = 0
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we enforce the interface conditions p−
N − p+

1 = 0 and u−
N − u+

1 = 0 . These
are weakly implemented using penalties

1

κ

dp−

dt
+Du− =

τ−1
Z

it− , ρ
du−

dt
+Dp− = τ−1 it− , (23)

1

κ

dp+

dt
+Du+ =

τ+1
Z

it+ −
dx

κ
p+ , ρ

du+

dt
+Dp+ = τ+2 it+ − ρdxu

+ ,

(24)

where it− = H−1eN(w
−
2 −w+

2 ) and it+ = H−1e1(w
+
1 −w−

1 ) , and

w−
2 −w+

2 = 1
2
[Z (u−

N − u+
1 ) − (p−

N − p+
1 )] ,

w+
1 −w−

1 = 1
2
[Z (u+

1 − u−
N) + (p+

1 − p−
N)] .

As before, the real coefficients τ±i with i = {1, 2} are penalty parameters to be
determined by requiring stability. Let the discrete energy in each sub-block
be denoted by

E±(t) =
1

2κ

(
p±)T H (

p±)+ ρ

2

(
u±)T H (

u±) > 0 ,

and introduce the numerical interface term

itnum = −
1

Z
(w−

2 −w+
2 )

2 −
1

Z
(w+

1 −w−
1 )

2 ⩽ 0 .

The following theorem is proven in Appendix A.4.

Theorem 4. Consider the semi-discrete two-block approximation of the
pml (23)–(24), and let E(t) = E+(t) + E−(t) > 0 . If τ−1 = 1 and τ+1 = τ+2 =
τ−2 = −1 , then

dE

dt
= itnum − 2

(
1

2κ
(p+)

T
(dxH) (p+) +

ρ

2
(u+)

T
(dxH) (u+)

)
⩽ 0 .

Theorem 4 proves the stability of the numerical interface treatment (23)–(24).
The accuracy of the numerical solution is independent of the smoothness of
the damping function across the pml interface, but depends on the continuity
of the solutions which is guaranteed by the perfect matching property (10).
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4 Numerical experiments
In this section we perform numerical experiments to verify the anlysis per-
formed in the previous section. We consider a computational domain of length
L = 10 and a pml of width δ = 0.1× L and parameterise the pml damping
function such that modeling error is tol = 10−50 . This tol is much less than
the machine epsilon for ieee Standard for double precision floating-point
arithmetic.

We consider constant medium parameters ρ = 1 , κ = 2.2 and c =
√

κ/ρ ,
with initial conditions

u(x, t = 0) = f(x) = 10e−1/ω2(x−2.5)2 , p(x, t = 0) = 0 , ω = 0.3 , (25)

and boundary conditions (15) with zero reflection coefficients rδ, rL = 0 at
both boundaries. We discretise the domain with constant spatial step ∆x > 0

and evolve the solution to the final time t = 7 using the classical fourth
order accurate Runge-Kutta method with time step ∆t = νcfl∆x/c , where
νcfl is the Courant–Friedrichs–Levy (cfl) number and we set νcfl = 1 . We
measure the numerical error as the l2-norm of the difference between the
numerical solution and the exact solution

u =
1

2
[f(x+ ct) + f(x− ct)] , p =

Z

2
[f(x− ct) − f(x+ ct)] . (26)

We set ∆x = 0.02 and perform numerical experiments using n = 0, 1, 2 for the
damping function (12). The numerical error at t = 5.5 is shown in Figure 1.
For the standard sbp-sat method when damping is discontinuous, n = 0

and numerical errors are large, as seen in Figure 1(a). In Figure 1(b), the
error decreases for a linear n = 1 damping function, but the pml reflection
error significantly dominates the error of the numerical method. Setting
n = 2 improves accuracy, however it increases the magnitude of the damping
strength d0 and this eventually violates the restriction imposed on an explicit
time-step by the νcfl. For n = 2 , Figure 1(c), shows the solution explodes in
the pml and destroys the accuracy of the solution everywhere. For large d0
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(a) Standard method with n = 0 (b) Standard method with n = 1

(c) Standard method with n = 2 (d) Multi-block method with n = 0

Figure 1: Numerical errors for the pressure at time t = 5.5 when the damping
function σ has degree: (a) n = 0 ; (b) n = 1 ; and (c) n = 2 , for an sbp
operator (sbp6) with sixth order accurate interior stencils; and for (d) n = 0

with the multi-block method.

the numerical method is stabilised by reducing the time-step or through an
implicit time-stepping method. However, any stabilisation strategy will have a
negative impact on the efficiency of the numerical method. For the multi-block
sbp-sat method the numerical error is independent of the smoothness of
the damping, as seen in Figure 1(d) with n = 0 . The multi-block sbp-sat
method avoids differentiating the solution across the discontinuous interface
and ensures the accuracy of numerical solutions.

We also perform grid convergence studies. Table 1 is for the standard sbp-sat
method and shows that the non-smoothness of the damping function destroys
the convergence properties of the underlying numerical method. Table 2 is
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Table 1: The convergence of the error for the standard sbp-sat method.
Nodes n = 0 Rate n = 1 Rate

201 5.171× 10−2 N/A 1.578× 10−3 N/A
401 1.725× 10−2 1.584 3.339× 10−4 2.241

801 7.857× 10−3 1.135 8.933× 10−5 1.902

1601 3.681× 10−3 1.094 2.213× 10−5 2.013

3201 1.832× 10−3 1.007 5.629× 10−6 1.975

Table 2: The convergence of the error for the multi-block sbp-sat method.
Nodes n = 0 Rate n = 1 Rate

201 4.074× 10−3 N/A 4.074× 10−3 N/A
401 5.013× 10−5 6.345 5.013× 10−5 6.345

801 1.086× 10−6 5.529 1.086× 10−6 5.529

1601 3.182× 10−8 5.092 3.182× 10−8 5.092

3201 1.015× 10−9 4.970 1.015× 10−9 4.970

for the multi-block sbp-sat method, where we preserve the accuracy and the
convergence properties of the numerical method, even when the pml damping
is discontinuous.

5 Conclusion
We derived and analysed optimal pml parameters for the 1D acoustic wave
equation. For monomial profiles we parameterise the pml damping function
such that the pml modeling error is much less than the machine epsilon for
ieee Standard double precision floating-point arithmetic. The pml parameters
are optimal, in terms of efficiency, for a piece-wise constant profile. We derived
provably stable schemes for the pml using the sbp-sat method. However, for
non-smooth damping functions a straightforward sbp-sat method generates
large pml reflection errors which pollute the solutions everywhere. Using a
multi-block strategy, we present a numerical implementation of the pml that
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completely eliminates the pml errors. Numerical experiments are presented
to verify the analysis. The future direction of this research is to extend the
1D result to 2D and 3D problems.

A Appendix
In this appendix we prove the theorems presented in this article.

A.1 Proof of Theorem 1

Proof: We multiply the first equation of (6) by u and multiply the second
equation of (6) by p, then integrate with respect to x to obtain∫ δ

−L

(
ρu

∂u

∂t
+

1

κ
p
∂p

∂t

)
dx+

∫ δ

−L

(
u
∂p

∂x
+ p

∂u

∂x

)
dx

= −

∫ δ

−L

(
ρσu2 +

1

κ
σp2

)
dx . (27)

Using integration by parts

dE(t)

dt
= bt − 2

∫ δ

−L

σ

(
ρ

2
u2 +

1

2κ
p2

)
dx , (28)

bt = u(−L, t)p(−L, t) − u(δ, t)p(δ, t) .

♠

A.2 Proof of Theorem 2

Proof: Introduce the boundary terms

bt− = u(−L, t)p(−L, t) − u−p− , bt+ = u+p+ − u(δ, t)p(δ, t) .
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From (28) in the proof of Theorem 1 (Appendix A) and pml equation (6),
we have

dE−(t)

dt
= bt− ,

dE+(t)

dt
= bt+ − 2

∫ δ

−L

σ

(
ρ

2
u2 +

1

2κ
p2

)
dx .

Since p− = p+ = p we have

d [E−(t) + E+(t)]

dt
= bt − p[[u]] − 2

∫ δ

0

σ

(
ρ

2
(u+)2 +

1

2κ
(p+)2

)
dx .

♠

A.3 Proof of Theorem 3

Proof: Let τ11 = τ22 = τ21 = −1 and τ12 = 1 , and multiply the first
equation of (22) by pTH to obtain

1

κ
pTH

dp

dt
+ pTHDu = −

1− rL

2
u1p1 −

1+ rL

2Z
p2
1

+
1− rδ

2
uNpN +

1+ rδ

2
p2
N −

1

κ
pT(dxH)p . (29)

Then multiply the second equation of (22) by uTH to obtain

ρuTH
du

dt
+ uTHDp = −

1− rL

2
Zu2

1 −
1+ rL

2
u1p1

−
1− rδ

2
Zu2

N +
1+ rδ

2
uNpN − ρuT(dxH)u . (30)

Sum equations (29) and (30), and use the sbp property (19) to obtain

dE(t)

dt
= btnum − 2

(
1

κ
pT (dxH)p+ ρuT (dxH)u

)
⩽ 0 .

♠
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A.4 Proof of Theorem 4

Proof: Let τ−1 = 1 and τ+1 = τ+2 = τ−2 = −1 . Multiply the first equation
of (23) by (p−)TH and multiply the second equation of (23) by (u−)TH, then
sum them together and use the sbp property (19) to obtain

dE−

dt
= −u−

Np
−
N +

1

Z
p−
N(w

−
2 −w+

2 ) − u−
N(w

−
2 −w+

2 ) .

Similarly, multiply the first equation of (24) by (p+)TH and multiply the
second equation of (24) by (u+)TH, then sum them together and use the sbp
property (19) to obtain

dE+

dt
= u+

1 p
+
1 −

1

Z
p+
1 (w

+
1 −w−

1 ) − u+
1 (w

+
1 −w−

1 )

− 2

(
1

2κ
(p+)

T
(dxH) (p+) +

ρ

2
(u+)

T
(dxH) (u+)

)
. (31)

We have included interface terms only, and have ignored external boundary
terms.

Using (2) we rewrite u−, u+, p− and p+ as functions of w−
1 , w−

2 , w1+ and w+
2 :

dE−

dt
= −

1

Z
[(w−

1 )
2 + (w−

2 )
2 − 2w−

2 w
+
2 ] ,

dE+

dt
= −

1

Z
[(w+

1 )
2 + (w+

2 )
2 − 2w−

1 w
+
1 ]

− 2

(
1

2κ
(p+)

T
(dxH) (p+) +

ρ

2
(u+)

T
(dxH) (u+)

)
.

On summing these two equations together, we obtain

dE

dt
= itnum − 2

(
1

2κ
(p+)

T
(dxH) (p+) +

ρ

2
(u+)

T
(dxH) (u+)

)
⩽ 0 .

♠
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