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Asymmetrical suction and injection in laminar
channels with porous walls: a fixed point
approach
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Abstract

The problem of laminar flow in a rectangular channel with a pair of
porous walls is considered. The porous walls allow fluid to be injected
into or sucked out of the channel at constant velocities normal to the
walls; the velocities at each wall are not necessarily of equal magnitude
nor symmetrical in direction. In this article, a unique solution to this
problem is shown to exist for sufficiently low Reynolds numbers through
the application of Banach’s fixed point theorem. This serves to further
the discussion about the uniqueness of solutions for this problem, whilst
also demonstrating the suitability of a fixed point approach to this
family of fluid dynamics problems.
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1 Introduction

The flow of fluid through rectangular channels with porous walls has attracted
much interest since its original study by Abraham Berman in 1953 [1, 2, 3, 5,
6]. A large portion of this effort has gone into extending Berman’s analysis
and results for larger magnitudes of Reynolds number at the porous walls.
The original investigation involved the idealistic assumption of symmetric wall
fluid velocities in which the fluid extracted through the walls of the channel
had equal speeds [2]. Terrill and Shrestha [5] extended the investigation to
find solutions in the case where flow velocities at the walls were not necessarily
equal, in either magnitude or direction. This extension on Berman’s original
assumptions is desirable to study as it is arguably closer to modelling real-
world phenomena given that symmetric flows are somewhat idealised.

In this article, a unique solution is found to exist for low Reynolds numbers.
The approach taken herein follows that undertaken by Almuthaybiri and
Tisdell [1] whereby Banach’s Fixed Point Theorem (Banach’s FPT herein)
is used to approximate the solution to the original Berman problem. This
approach is, as far as the author is aware, novel for solving this family of
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fluid problems. Thus, it is hoped that this article encourages its further
adoption for study of other types of flow. The study of such flows is also
well-motivated in practice; with this type of flow being found in applications
such as transpiration cooling, gaseous diffusion, boundary layer separation
control and systems of fluid filtration [3, 6].

2 Mathematical formulation

Consider the steady laminar flow of a viscous, incompressible fluid through a
rectangular cross-section channel, as in Figure 1. This channel has porous top
and bottom walls such that fluid may be injected in or extracted out of the
channel perpendicular to the porous walls. We set up the coordinate system
such that the origin is midway between the porous walls. The x axis lies
parallel to the porous walls, whilst the y axis is perpendicular to the walls. A
constant pressure gradient drives a flow along the channel in the x direction.
A dimensionless coordinate 1 = y/h is introduced, where h is half the height
of the channel. The z axis lies perpendicular to the x and y axes, out of the

page.

We assume that the width (z direction) of the channel is much larger than
the height (y direction). This assumption yields fluid flow independent of the
z direction, thus reducing it to a two-dimensional problem. As is customary,
u(x,y) and v(x,y) represent the velocity components in the x and y directions,
respectively. We consider the case whereby fluid is injected /extracted into
the channel with velocity v; through the bottom wall (v; > 0 for injection,
v; < 0 for suction), and with velocity v, through the top wall (v, > 0 for
suction, v; < 0 for injection). All four combinations of signs of these velocities
are possible. However, as found by Terrill and Shrestha [5], the mixed case,
where fluid is injected at one wall and extracted at the other (as in Figure 1),
leads to different results depending on the relative magnitudes of the wall
velocities [5]. For the current investigation we derive results only for the case
where [v,] > |[vq| with Reynolds number defined as R = v,h/v, where v is the
kinematic viscosity of the fluid.
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Figure 1: Coordinate system with labelled wall velocities; top wall: suction,
bottom wall: injection. The grey arrow shows the main horizontal flow of
fluid through a channel driven by a constant pressure gradient. Illustrative
streamlines are given in blue and are not to scale.

The equations of momentum for this problem (in terms of 1) are the two-
dimensional incompressible Navier—Stokes equations
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Additionally, the continuity equation is
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ox hom
Finally, the boundary conditions for the problem are

u(x,h) =0, u(x,—h)=0, (No-slip condition)
v(x,h) =v;, v(x,—h) =v;. (Suction/Injection at walls)
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Using a stream function

W(Xﬂﬂ = |:hU(O)

X2

—sz} fn),

where o; =1 —v;/vy and U(0) is an arbitrary average horizontal velocity at
x = 0, Terrill and Shrestha [5], following Berman’s original work, reduced
the Navier—Stokes equations for this problem to

£(n) + RIF2(n) — F) ] = K,

where K is a constant. And so, by differentiation with respect to 1, we have

() + R (M)F(n) — Fm)F” ()] = 0. (1)
The boundary conditions in terms of this new unknown function f are
f'(1) =0, f'(-1)=0, f(1)=1, f(-1)=1—0u,. (2)

Equation (1) with boundary conditions (2) define the boundary value problem
(BVP) to be solved using Banach’s FPT [1, Theorem 4.3].

3 Green’s function

To solve the BVP using Banach’s FPT, we first reformulate it as an integral
equation with a Green’s function kernel.

Lemma 1. The BVP, defined by (1) and (2), is equivalent to the integral
equation

1
f(n) :J G, s)R[F'(s)f"(s) — f(s)f(s)]ds + d(m), me[-1,1],
—1
where the Green’s function is

1 (s+1PM—12Mm(s—2)+2s—1] for —1<s
T2\ M 1P(s—1)Psm—2)+2q—1] for —1<n

And d(m) = [o(3n —1?) +2(2 — x)1/4, with & :==1—v/v;.

G(n,s) 1
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Proof: A sketch of the proof is given as the method to convert a BVP into
an equivalent integral equation is readily available |e.g., 4, 1]. It is sufficient
to find f of the form

fn) =dm) + d1(n), (3)

where ¢(11) is the solution to the homogeneous ODE ¢ = 0 with non-
homogeneous boundary conditions. And ¢;(1) is found using Cauchy’s
formula for repeated integration on the non-homogeneous ODE:

oM (M) = —RIbiM)d' (M) — di(m)di”"(M)],

with boundary conditions determining the constants of integration. [

The next lemma gives bounds for the Green’s function and its partial deriva-
tives which are used in the application of Banach’s FPT in Section 4.

Lemma 2. The Green’s function G and its partial derivatives for allm €
[—1,1] satisfy

1
1
J Gl ds < 5 = Bo,
1
96| ”’ < 2 (26V/13—92)
4 2
1
G(n,s) 1
L o ds <5 =By
1 3
0°G(n, s)
e CRR

Proof: A sketch proof is given as the details are cumbersome and uninfor-
mative.

The first bound (¢ uses the fact that G < 0 on [—1,1]x[—1,1]. The remaining
bounds are found by maximising the respective partial derivatives by means
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of the max-min theorem, using this maximum value in the integrand, and
finally simplifying the expression. [

4 Fixed point theorem approach

The perturbation series solution to the BVP (1) and (2) was found previously
by Terrill and Shrestha [5]. But, a discussion on the uniqueness of such a
solution is yet to be undertaken. The following use of Banach’s FPT enables
a better understanding of the uniqueness of the solution of this laminar flow
problem.

To apply Banach’s FPT to the BVP (1) and (2) a choice of non-empty set X,
operator T and metric d needs to be made. They are to be chosen such that
the operator T is a self-map (i.e., T : X — X) and also a contraction (i.e.,
d(Tf, Tg) < kd(f, g) with k < 1). These two properties ultimately lead to a
pair of inequalities relating the Reynolds number R and R. Constant R is a
half the width (as measured using the metric d) of the solution strip around
the homogeneous solution ¢(1), and is unrelated to the half width of the
channel h.

In the following section a choice of metric and operator is made so that the
necessary conditions for the application of Banach’s FPT can be constructed.

4.1 Set, metric and operator choice

Let C3([—1,1]) be the set of thrice differentiable continuous functions in the
closed interval [—1,1]. For all f,g € C3([-1,1]) define the metric d, such
that for i ={0,1, 2,3},

= g (1) _q®
d(f, g) ii&??z{,s{wlnggafa]If M —g (n)\},

where f()(1) denotes the ith derivative of f with respect to 1 and constants
W; = Bo/Pi. Recall that B; are the upper bounds found in Lemma 2.
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For completeness, these constants are explicitly given by Wy =1, W; =
9/[16(13v/13 —46)], W, = 1/6 and W3 = 1/24. Tt can be shown that the
pair (C3([—1,1]),d) form a complete metric space [1].

The domain of the operator T is chosen to be
X = Bg = {f € C(I=1,1)) : d(f, $) < R}, (4)

where ¢ is given in Lemma 1. Now, By is a closed subspace of C3([—1,1])
and thus the chosen metric is still complete in this space.

Define T : By — C3([—1, 1]) such that

1
(TF)(n) = J1 G, s)RIF ()" (s) — ()" (s)] ds + o(m),  (5)

where ¢(n) and G(n,s) were found in Lemma (1). Finding the fixed point
of operator T equates to finding an expression for f, the solution to the BvVP
(1) and (2). Thus the choice of operator is reasonable. Finding this fixed
point requires some intermediary lemmas, which aid in showing that the
operator T, as chosen here, is a self-map and a contraction on Bg. The next
section discusses these lemmas.

4.2 Results and lemmas for applying Banach’s FPT

Recall that ¢p(n) = [x2(31 —1?) +2(2 — x2)]/4 from Lemma 1. We state the
bounds on the absolute value of ¢ and its derivatives up to the third order.
The bounds are found by use of absolute value properties and the triangle
inequality. We have

bMI<3, Id'MI<3, [d"MI<3, "M <3. (6)
In the following lemma we use these bounds and the set
B={(muv,wz) eR:nel-1,1], u-dMm) <R,
v—'(n)] < 32(26vV13 — 46)R/9,
w— ") <12R, [z— "' ()] < 24R}. (7)
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Lemma 3. Define a function H : [=1,1]xR* — R such that H(n,w, v, W, z) =
R(vw —uz). Then H is bounded above on B by

N = [R] |$(208V/13 — 727)R? + 1(416V/13 — 1265)R + %] .

Proof: For (n,u,v,w,z) on B consider
[R(vw — uz)|
[RI(vIIw] + [ullzl)

|

Ry ="M+ o' M (Iw — ")l + " (n)])
+ (lu= oM+ IdmD(z— ¢" M)+ 16" M)

— |R| [£(208V/13 — 727)R? + L (416V/T3 — 1265)R + %]
=:N.

|H(T]) u) V) W’ Z)|

<
<

Above we have repeatedly used the triangle inequality, and also utilised the
bounds (6) on ¢V (n) along with the definition (7) of the set B. [ )

Another useful lemma which defines the local Lipschitz constants for the
function H follows.

Lemma 4. As in Lemma 3, define Hn,u,v,w,z) = R(vw — uz) for

(myw,v,w,z) € B. For all R > 0 the function H is Lipschitz on B so that there
exist constants Li such that, for all (n,uo, Uy, w2, uz), (M, vo,v1,v2,v3) € B,

’H(n)u0>u1>u2>u3) - H(WVO,VHVZ,Vs)’ g Li Z ‘ul - Vil .
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Proof: The proof of this lemma closely follows that of a lemma by Al-
muthaybiri and Tisdell [1]. We include here only the bounds of the partial
derivatives on B as these are the Lipschitz constants to be used later. We
have, for all (n,u,v,w,z) € B,

oH
ou
oH
v

M| (32(13@—46)R+§> L

<RI (24R +3) = Ly,

<IRI(12R+3) = Ly,

ow 9 2

oH
0z

<|5R|(R+§) L.

4.3 Application of FPT

The definitions and lemmas introduced in the previous section enable the
application of Banach’s FPT to our problem. The self-map and contraction
mapping conditions in Banach’s FPT lead to a restriction on the values of the
Reynolds number R and R. This is summarised in the following result, whose
proof comes from applying Banach’s FPT to the problem.

Theorem 5. If R > 0 and R simultaneously satisfy the two inequalities
R [21—4 <§R2(208\/§ —727) + 1R(416V13 — 1301) + 9)} <R, (8)
R [;—2 (16R<208\/§—727) +416V13 — 1301)} <1, (9

then the operator T has a unique fized point in Br. Moreover, the BVP
(1) and (2) admits a unique solution f with (n,f(n),f'(n),f”"(n),f”(n)) € B
for allm € [—1,1].
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Proof: We continue using the notation which has been established previously
in this article. This includes: [3; for the relevant bounds concerning the Green’s
function, W; the constants used in the definition of the set B, and L; for the
Lipschitz constants (recalling that H is Lipschitz on the set B). We use the
operator (5) with domain Byg.

Self-map condition We show that the operator T is a self-map, that is
T:Br — Bg. Consider for f € Bg,n € [-1,1]:

1
(THM) — dm)] < J_] G, s)IRIF(s)F"(s) — £(s)” (s)]| ds

1

< NJ |IG(n,s)|ds (by Lemma 3)
—1

< NBo = N/24.

In the above, we utilised the Green’s function bounds from Lemma 3, which
assumes that (n,f(n),f'(n),f”"(m),f”’(n)) € B. Finally, since Wy, = 1, we
have Wol(Tf)(n) — d(m)| < NBo.

Omitting repetitive details, we have in general

Po
B

The upper bounds above hold for all n € [—1,1], and thus it is also true that

Wi(TF) P () — eV ()l < ==NBi = NBo.

Wi max [(T)M(n) — d™ M)l < NBo.

nel—1,1]

This final observation then means that
d(Tf, ¢) = max {wi max |(Tf)V(n) — oV (n) < Nﬁo}
i=0,1,2,3 nel—1,1]
< max{Nfo, NBo, NBo, NBo}
= NfBo
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— IR {;—4 (%RZ(ZOS\/E —727) + 1R(416v13 — 1301) + 9)}

< R. (by (8))

Thus, we have, from the definition (4) of Bg, that Tf € By and thus we have
shown that T : Br — By.

Contraction condition We now show that the mapping is a contraction.
We thus want to show that d(Tf, Tg) < kd(f,g) for f,ge Bpand0 <k < 1.
Let f,g € Bg andn € [—1,1]. Then, by using the definition of H in Lemma 3,
we have

(TF)(n) — (Tg)(n)| =

1
L G, s)R([f'(s)f"(s) — f(s)f"(s)] — [g"(s)g"(s) — g(s)g”"(s)])| ds

1
<Jmmw
.
« [H(s, f(s), f(s), (s), (s)) — H(s, g(s), g'(s), g" (), 9" ()] ds

1 4
< J IG(n,s)| Z L (s) — g“)(s)l ds (by Lemma 4)
-1 i=1

. 4 1
<Y Ld(fg) | I6(n,s)lds
i=1 -1
(using [fP(s) — gW(s)| < %d(f, g), not proved here)
3
< <%d(f, g) Z I_i) Bo (using Lemma 2)
0 i=0

= (LoPo + LiB1 + L2B2 + L3P3)d(f, g)
= IRl | (16R(208V13 — 727) +416V13 ~1301) | d(f, ).

For convenience define

v =R [7‘—2 <16R (zosm - 727) +416V13 — 1301)] .
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By very similar methods we can show that, in general,

(T () — (Tg) V() < Be <L0+L1% Lk 63) a(f, g).
0 Bo Bo

Since W; = 3o/, we then have

WH(TA Y () — (Tg) YV ()l < vdl(f, g).
Since the above inequalities hold for all n € [—1,1], it is also the case that

Wi max |(TH™(n) — (Tg)V () < vd(f, g),

nel-11]
for all i €{0,1,2,3}.
We now show our desired result. Consider, for all Tf, Tg € By,
d(Tf, Tg) = W; f(s) — g
(T, Tg) = max {Wi max [f"(s)— g (s)l}
<vd(f,g).

The operator T is a contraction mapping when vy < 1, which is precisely the
second inequality (9).

We have thus satisfied all the necessary conditions to conclude, by Banach’s
FPT, that there exists a unique f* € By such that Tf* = f*. This f*(n) solves
our BVP (1) and (2). [ )

5 Conclusion

In this work, the unique solution for the problem of laminar flow through
a porous wall channel with a pair of walls with different permeabilities
is guaranteed to exist for sufficiently low Reynolds number. Its existence
was proven using Banach’s fixed point theorem. Future work could involve
approximating this solution via Picard iteration.
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