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Stratified natural convection flow in
rectangular open cavities
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Abstract

We explore natural convection in a two dimensional rectangular
open cavity with thermally stratified ambient for both transient and
steady-state flow. The left hand vertical wall of the cavity is heated
and the facing right hand wall is open. The top and bottom are
insulated. Numerical solutions are obtained for Rayleigh numbers
varying from 105 to 1010 with Prandtl number 1.0. This article focuses
on the effect of stratification of the ambient fluid on the unsteady
behaviour of the natural convection flow in rectangular open cavities.
Results show that the flow is steady at low Rayleigh number and
becomes unsteady at sufficiently high Rayleigh number (5.4 × 108).
Streamline and temperature contour plots give a better understanding
of the heat transfer and the flow mechanisms inside the cavity.

See http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/191
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1 Introduction

Two-dimensional natural convection flow in enclosures has received consid-
erable attention in the past [1, 3, 6, 10, 11] whereas the related problem of
partial enclosures and open cavities, has received very little attention [5, 7, 9].
One of the reasons for this can be traced to the difficulty in specifying the
proper boundary conditions for an open cavity configuration. Javam and
Armfield [8] showed that at Prandtl number Pr = 0.7 in the open cavity
with background stratification the flow undergoes bifurcations of the same
type as observed for the closed cavity with, for a sufficiently high Rayleigh
number low and high frequency signals observed.

In this study, unsteady natural convection flow in two dimensional open
cavities with thermally stratified ambient has been investigated. The cavity
has one heated vertical wall facing a vertical opening, with top and bot-
tom insulated. Results were obtained for Rayleigh number varying from 105

to 1010 with Prandtl number Pr = 1.0 . The purpose is to determine the
basic structure of the flow and to obtain the critical Rayleigh number asso-
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ciated with bifurcation and transition to the chaotic flow. Streamline and
temperature contour plots illustrate the dependence upon Rayleigh number
of the basic flow patterns.

2 Numerical method

The equations considered govern the motion of an incompressible, viscous
and stable temperature stratified flow. We assume that the flow is two-
dimensional and unsteady with constant properties. Using the Boussinesq
approximation, the continuity, momentum, and energy equations govern-
ing two-dimensional stratified natural convection flow are written in non-
dimensional form as follows:
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The Rayleigh number and Prandtl number are defined respectively as

Ra =
gβ∆TH3

νκ
, (5)

and
Pr =

ν

κ
, (6)

where g is the acceleration due to gravity, β the coefficient of thermal expan-
sion, t is the time, T and Tb are the fluctuating and background temperature
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Figure 1: Geometry and boundary condition.

respectively, ∆T is the total temperature variation, H is the height of the
cavity and κ the thermal diffusivity. u is the velocity component in the hori-
zontal x-direction and v is the velocity component in the vertical y-direction.
The geometry of the open cavity, the coordinate system and boundary con-
ditions for the present study are shown in Figure 1. On the open boundary
the x derivatives of the velocities are set to zero, while for positive u-velocity
∂T/∂x = 0 and for negative u-velocity T = 0 . Initially the fluid is at rest
and isothermal (T = 0) and at time t = 0 the left side wall is instantaneously
heated to a non-dimensional temperature of T = 1− Tb .

The equations of motion were solved using a fractional step, Navier–
Stokes solver. The scheme is defined on a non-staggered mesh in which all
the variable are stored at the same grid locations, using finite volumes, with
standard second order central differences used for the viscous terms, the pres-
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sure gradient and divergence terms. The advective terms are approximated
using quick [8]. The momentum and temperature terms are inverted using
a limited iteration adi solver and Poisson pressure correction equation uses
a preconditioned restarted gmres solver [2]. The scheme is similar to that
presented for a staggered mesh in Armfield and Street [4].

A non-uniform mesh is used allowing grid nodes to be concentrated in the
region of the heated wall and the upper and lower boundaries. The origin
is located at the bottom left corner of the domain with y increasing up the
hot wall and x increasing horizontally into the domain. The horizontal mesh
size adjacent to the hot wall is ∆wx = 0.001 with a grid stretching factor
of 1.07 per cell unit until x = 0.1 , the stretching factor is then gradually
reduced until the grid becomes uniform. The vertical mesh size adjacent
to the insulated boundaries is ∆wy = 0.001 with the same stretching factor
per cell unit until y = 0.1 for the lower domain and y = 0.9 for the upper
domain. The grid stretching factor is then gradually reduced until the grid
becomes uniform in the interior. This gives a basic grid of 129 × 172 nodes
for aspect ratio 0.5 (Height/Width) which is used with a basic time step of
∆t = 2.5 × 10−7. Mesh and time step dependence tests have been carried
out by comparing the solution obtained on the basic mesh of 129× 172 and
two more meshes of 87× 111 and 245× 357 nodes. The comparison between
the three mesh sizes results show very small variations, indicating that the
basic mesh and time step provide sufficient resolution.

3 Results and discussion

Results are presented for a wide range of Rayleigh numbers varying from
Ra = 105 to Ra = 1010 with Pr = 1.0 in rectangular open cavities. Initially
the fluid in the cavity is stationary with a background temperature Tb and
the fluctuating temperature set to zero T = 0 . At time t = 0 the left hand
vertical side wall is instantaneously heated to a non-dimensional temperature
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Figure 2: Streamline and temperature contours of stratified flow at Ra =
105.
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of T = 1−Tb (the total temperature is T +Tb). The background temperature
gradient, dTb/dy = 2.0 with Tb(x, 0) = −1 , is constant for all simulations.

3.1 Low Rayleigh number and steady state flow

Figure 2 contains the fully developed stream-function (top) and temperature
(bottom) contours for Ra = 105 with the hot wall on the left and the open
boundary on the right at time t = 0.25 . The flow enters the cavity from
the lower half of the open boundary and exits the cavity through the upper
part of the open boundary, forming a hot intrusion that is driven across the
cavity by a combination of momentum and buoyancy. The entrainment and
de-entrainment regions are observed to be almost identical. As is seen in
Figure 2 the isotherms show a thick thermal boundary layer is formed and
travels up the heated wall entraining the ambient fluid over the lower half of
its height and discharging over the upper half. The discharge of fluid from
the upper part of the boundary layer occurs smoothly. The time series of
the temperature (not shown in here) show that the flow is steady at this
Rayleigh number as expected based on the critical Rayleigh number for the
convective instability of a natural convection boundary layer as reported by
Armfield and Janssen [3].

3.2 High Rayleigh number and unsteady flow

Figure 3 shows the fully developed stream-function (top) and temperature
contours (bottom) for Ra = 5.3× 108 at t = 0.25 . The basic flow structure
is the same as that observed in Figure 2 for the lower Rayleigh number flow,
with a natural convection boundary layer adjacent to the heated wall entrain-
ing fluid from the lower part of the open cavity and open boundary, which is
then discharged into an intrusion beneath the upper boundary. However, the
discharge of fluid from the upper part of the boundary layer is quite different
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Figure 3: Streamline and temperature contours of stratified flow at Ra =
5.3× 108.
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Figure 4: Temperature time series for Ra = 5.3× 108 at different times.
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Figure 5: Temperature time series and the associated spectra for Ra =
5.4× 108.



3 Results and discussion C551

from that of the lower Rayleigh number result shown above. The hot intru-
sion in the upstream region exhibits a wave like structure. The discharge
passes smoothly into the intrusion through the wave structure, and exits the
domain. The thermal boundary layer is thinner than that observed for the
lower Rayleigh number, which is expected as the boundary layer thickness
scales as δT = H/Ra1/4 [11].

Figure 4 contains the temperature time series at a point adjacent to
the hot wall (x = 0.004 , y = 0.916) for Ra = 5.3 × 108. The time se-
ries show that the flow is unsteady with a quasi-periodic behavior at early
time stage. However, the flow ultimately becomes steady at larger time.
Therefore, this Rayleigh number is classified as a sub-critical flow. Figure 5
presents temperature time series adjacent to the hot wall and the associated
spectra for Ra = 5.4 × 108. The flow structure is similar to that observed
for Ra = 5.3 × 108 and for brevity temperature and stream-function con-
tours are not shown. The temperature time series show the flow is unsteady
and has a periodic behavior. The spectra of the time series demonstrate the
signal has a dominant frequency, determined using Fourier transforms to be
f = 4440 . Therefore the flow undergoes a bifurcation to unsteady flow at
Ra = 5.4 × 108. This Rayleigh number is defined as supercritical and the
critical Rayleigh number then lies between 5.3× 108 and 5.4× 108.

Figure 6 shows the stream-function (top) and temperature contours (bot-
tom) for the fully developed flow at Ra = 2.0 × 109 at t = 0.25 . The over-
all flow structure at this Rayleigh number is similar to that observed for
Ra = 5.3 × 108. However, the discharge of fluid from the upper part of the
boundary layer is different from that observed for the lower Rayleigh num-
ber, with vertical perturbations visible in this region. These perturbations
are associated with waves traveling up the boundary layer and passing into
the intrusion. These waves are also seen in Figure 7 which contains the tem-
perature time series adjacent to the hot wall (x = 0.004 , y = 0.916) and the
associated spectra for Ra = 2.0× 109. The temperature time series indicate
the flow is unsteady and has a periodic behavior. The spectra of the time



3 Results and discussion C552

Figure 6: Streamline and temperature contours of stratified flow at Ra =
2× 109.
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Figure 7: Temperature time series and the associated spectra for Ra =
2× 109.

series show the signal has a dominant frequency of f = 12330 . Figure 8
presents the fully developed stream-function contours (top) and temperature
time series adjacent to the hot wall with the associated spectra (bottom)
for Ra = 2.2 × 109. The flow structure is different to that observed for
Ra = 2.0×109 with perturbations observed throughout the cavity indicating
a transition to a chaotic multi-modal flow has occurred. The spectra of the
time series demonstrate the signal has an overall dominant frequency with a
broad banded structure.

4 Conclusions

Natural convection in rectangular open cavities with stratified ambient, for
Rayleigh numbers varying from Ra = 105 to Ra = 1010 with Prandtl number
Pr = 1.0 , has been investigated. Flow enters the cavity from the lower half
of the open boundary and leaves the cavity at the upper half of the open
boundary. A boundary layer forms on the heated wall entraining fluid from
the interior over the lower boundary layer region and discharging it into an
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Figure 8: Streamline contours (top) and temperature time series with the
associated spectra (bottom) for Ra = 2.2× 109.
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intrusion in the upper region. As the flow passes from the boundary layer
to the intrusion it forms a wave-like structure. As the Rayleigh number is
increased the boundary layer becomes thinner and the length of the wave-
like structure reduces. The flow bifurcates to a periodic unsteady mode
at Ra = 5.4 × 108 and the critical Rayleigh number for this bifurcation
was found to be between 5.3 × 108 and 5.4 × 108. A similar bifurcated
periodic flow is observed at Ra = 2 × 109; however, the amplitude is now
considerably increased with the waves clearly visible in the steam-lines in
the upper part of the boundary layer. Flow animations have shown these are
traveling waves, amplifying in their direction of travel, and are therefore most
likely to be associated with the known convective instability of the natural
convection boundary layer [3]. A further increase in the Rayleigh number,
to Ra = 2.2 × 109, leads to a general broad-banded spectra and the flow
undergoes a further transition between Ra = 2× 109 and Ra = 2.2× 109 to
a multi-modal chaotic structure.
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