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A generalization of the modified Simpson’s
rule and error bounds

Nenad Ujevi¢*

(Received 4 October 2004)

Abstract

A generalization of the modified Simpson’s rule is derived. Various
error bounds for this generalization are established. An application to
Dawson integral is given.
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1 Introduction

In recent years a number of authors have considered generalizations of some
known and some new quadrature rules. For example, generalizations of the
trapezoid, mid-point and Simpson’s quadrature rules are considered in [1,
2, 3, 4, 5]. As an illustration we give a generalization of the mid-point
quadrature rule [2],

lc:O

where
(tfa)n t € la atb
K (t) :{ @y 5]

For n = 1 we get the mid-point rule,

/abf(t) dt = (b—a)f <a;rb> — /abKl(t)f’(t) di

In this paper we consider a generalization of the modified Simpson’s rule:

/abf(x)dx _ b;—oa[7f(a)+16f (aTM>+7f(b)}

O 1r0) - o))+ R,
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where the error term is, to a leading order estimate,

(b—a)

R(1) ~ 305100

[f7(b) = f*(a)] -

The above rule is derived in [6]. It is shown that this rule has much better
approximation properties than the well-known classical Simpson’s rule. In [6]
we also find various error inequalities for this rule.

Here we give a generalization of of the modified Simpson’s rule and we
also give various error bounds for the generalization . These error bounds
are generalizations of the error bounds obtained in [6].

Finally, we give a numerical example: we derive a summation formula for
the Dawson integral E(z) = [ exp(t?) dt.

2 Main results

Theorem 1 Let f : [a,b] — R be a function such that f™) is absolutely
continuous. Then

[ o= TR 1Oy SO0
1

30 60
(i —1)(i — 2)(b— a)¥H? (o (a+D
EZ 22-2(2i + 1) I ( 2 >+R<f)’ (1)

1=

where m = [251] , the integer part of (n —1)/2,
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and
(t—a)" 2 2 (b—a)(t—a) n(n—1)(b—a)? a+b
S, (t) = |t —a)” = 30 + 60 } e fa, 5],
n o (t—b)n—2 n(b—a)(t—b) n(n—1)(b—a)? b
nl (t=b)*+ 30 + 60 ] , 1€ (aT’b} :
(3)

Proof: We prove (1) by induction. First we note that

So(t) = { %( a)” 7(: (jl))((t b)) +(§)b3(§;)2 € [aa’ :TH)] ’
5( ) + 50 S (%7[)} J
(t—a) 2 7(b—a)(t—a) (b—a)? a+b
- § e e e
3! 10 0 | 2 Y]
(t—a)? 14(b—a)(t—a) (b—a)? a+b
54(t) = (t:ll!,) ((: )) 14(b— i)5(t b) _:_(bz)?‘]] | Z 2 ELQZ)] 7
a | 15 5 ’ 2 V]
(t—a)3 ) 7(b—a)(t—a) (b—a)? a+b
S5(t) = (s ((: )) (b a)ﬁ(t b :(bz)ﬂ | Zi ELZ,}}
5L | 3 ) 2 770
(t—a)* (b= a)(t—a) (b—a)2 a+b
Se(t) = (tfil!)) ((: )) 7(b— a)(t b) :(b a)? ﬂ ’ zi Eiﬁ’iﬁb}] ’
ol ’ 2 7

are Peano kernels for the modified Simpson’s quadrature rule, that is, we
have

b b
/ S fO(t)dt = — / So(6)£O)(t) dt
- [ S 7O at

b

= — [ Syt)f"(¢) dt
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_/s )£ (2) dt

a+b
_ +16f3(0 )+7f()(b_a)

O 6e /b f(t)dt

60

We easily show that (1) holds for n = 7. Now suppose that (1) holds for an
arbitrary n. We have to prove that (1) holds for n — n+ 1. To simplify the
proof we introduce

P(t) = (t —;!)" [(t_a)g_ 7n(b—3ag(t—a) N n(n — 16)0(b—a) } W
Ou(t) = (t —nb!)”_ {( ) +771(6—3&(3(15—1)) _i_n(n—l(j)éb—a) } 5)

We see that P, and @,, form Appell sequences of polynomials, that is

P;L(t) = Pn—l(t) ) Q%(t) - Qn—l(t) :

Then we have

(1 [ S

S
axo b
— (cpy / (D@ e+ () [ Quin (07 (6) e
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/ Qu() ™ (1)

— (1" / Su(0) £ (1) dt

4 (=1 [Pn+1 <a;b) Qs (a;b)} ) <a;b)

_Tf(a) +16f (257) + 7/ (0) ') = @), _ 42

O (b—a)+ 50
@_1>( 2)(b—a)**! o) (a+0
/f dt__ 22-2(2; + 1)! f”(T)

i s (439) - (439 (53)

_Tf(a) +16f (O“+ JHATB) IO 6—0f’<a> (b a)?
i—l)(z—2)(b—a)2i+1 o [a+0b
/ 1 (#) 22-2(2j + 1) f )(T) ’

where m; = [%} , since

o ()0 () (5

This completes the proof. [ )

Lemma 2 The Peano kernels S,(t), n > 6, satisfy:

b
/ Sp(t)dt =0, nis odd, (6)
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/ 1, (8)] dt = (n—2)(n—4)(b—a)"! )

15 2n(n+ 1)1
~ (n=3)(n—-5)(b—a)"

Proof: A simple calculation gives

b b—a)"™ (n—2)(n— .
/a Snlf) dt = 2£z+1(n>+1)!( - o

From the above relation we see that (6) holds, since 1 — (=1)""!' =0 if n is
odd.

We now consider some properties of the Appell sequences of polynomials
P,(t) and Q,(t), given by (4) and (5), respectively. We have that (t—a)"~2 >
0, foreachn > 6 and t € [a, "’TH’} . We also have

a+b
2

(b —a)(t —a) +n(n —1)(b — a)?

t—a)?—
(t=a) 30 60

>0, te[a, 1, n>~o,

such that P,(t) > 0 for n > 6 and ¢ € [a, %$?]. Since P,(t) = P,_1(t) we

conclude that P,(t) are increasing functions.

We have that (t—0)"2 < 0ifn > 6,nisodd and (t—b)"2>0ifn > 6,
n is even. Since
n(b—a)(t —b) Jrn(n —1)(b—a)?
30 60

(t—b)2+ a+b

>0, te[ ,b}, n>~o6,

we have that Q,(t) <0 if n is odd and @, (t) > 0 if n is even. As we know
Q. (t) = Q,_1(t) such that Q,(t) are decreasing functions if n is even and

Q). (t) are increasing functions if n is odd. We use these properties to prove

(7) and (8).
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We have

a+b

/ab|5n(t)| dt = /a2 |P,(t)] dt+[1b 1Q,.(1)| dt

/ £)dt| + /Qn 1) dt

(n—2)(n—4)(b—a)"!
15 2n(n+ 1)1

Finally, we have

max |S,(t)] = max{temax |P,(t)], max |Qn(t)|}

te[a,b] 0,252 te[ 452 b]
= max {

w () e (50}

(n—=3)(n—5)(b—a)"

Y

15 2nn!
' Y
We introduce the notation
r- | .
o 7f(a) + 16 (“£2) + 7/ (b) o) - f'(b) — f'(a) (b a)?
30 60
L~ (=1 =2)(b—a)*™ o (a+D
* 1_5Z 22i-2(2; + 1) re (T) ‘

1=3

Theorem 3 Let f : [a,b] — R be a function such that f* Y, n > 6, is
absolutely continuous and there exist real numbers v,,1",, such that v, <
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f(t) <T,, t€la,b]. Then

( Yy o (b—a)"* ifn is odd, 9)

and
_ 4\ntl _
Iopje LO=0" =2
15 2n(n + 1)!

4 ||f(")||OO if n is even. (10)

Proof: Let n be odd. From (2) and (6) we get

b b
R(f) = (—1)"/ Su(t) f(t) dt = (_1)n/ Su(t) {fm)(t)_ %-gfn} dt

/b|5n(t)| it (1)

<Fn_’7n'
- 2

such that we have

[R(f)| = I = F| < max | f

te(a,b)

n FTL
) (4) — %

We also have
Yo+ T

2

max | £ (t) —

tela,b]
From (11), (12) and (7) we get

r, -2 —4
30( + 1)! n
Let n be even. Then we have
|IR(f)] = [I—F]

/ Su(0) a5

(b—a) " (n —2)(n—4)
15 2n(n +1)!

17
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Theorem 4 Let f : [a,b] — R be a function such that f™Y, n > 6, is
absolutely continuous and let n be odd. If there exists a real number v, such
that v, < f™)(t), t € [a,b] then

(n—3)(n—5)(b—a)""

1
I = F| < — (T = )

1
— 15 2nn! ’ (13)
where
fU () = fD(a)
T, = .
b—a
If there exists a real number T',, such that f™(t) < T, , t € [a,b] then
1 (n—3)(n—5)(b—a)"!
—Fl< = — .
- Fl< (0, T) -~ (1)
Proof: We have
b
RO =11 = Fl= | [ (0 - S, (0)dt].
since (6) holds. Then we have
b
0 = s >dt]
< max |9, (t |/ ) dt
tela,b]

1 m=3)(n=5)b—a)" [ 1 (n—1)

- 3t [F00) — £ (@) 706 — a)]

1 (n—3)(n —5)(b—a)"

15 (T =) 2nn) '
In a similar way we can prove that (14) holds. A

Remark 5 Note that we can apply the estimations (9) and (10) only if
f™ is bounded. On the other hand, we can apply the estimation (13) if
f™ is unbounded above and we can apply the estimation (14) if f™ is
unbounded below.
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3 A numerical example

Here we consider the integral (Dawson integral) E(z) = [ exp(t?)dt and
apply the summation formula (1) to this integral. We get the summation
formula E(x) = F(z) + R(z), where

F(z) = -z {7+ 16 exp (%2) + 7eXp(x2)} _ %

N 1 i (i —1)(i — 2)x* ! £ (f) 7 (15)

22i-2(2 4 1) 2

and f(t) = exp(t?). We calculate the derivatives £\ (t):

fOt) = Pit) exp(t?),  Fy(t) = Z%iti7

where P;(t) is an odd function if j is odd and P;(t) is an even function if j is
even. The coefficients aj; are

a; = 0, j=12..., i=0,1,2...7,
ayr = 2, axn =2, ap=4,
aji = @1n, @i =205, 1+ G+ 1a 10, aj; =20

We now compare the summation formula (15) with the known compound
formula (for the modified Simpson’s rule),

g 7h Th o 8h o | [T+ Tin
[ o = Fues@is gy s s ()
x exp(z?)
gy T R@), (16)

where z; = ih, h =x/n, f(t) = exp(t?).
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Let us choose x = 1. The “exact” value is F(1) = 1.46265174590718.
If we use (15) with m = 10 then we get E(1) = 1.46265174590708. If we
use (16) with n = 50 then we get E(1) = 1.46265174590709 . All calculations
are done in double precision arithmetic. The first approximate result is
obtained faster than the second one. This is a consequence of the fact that
we have to calculate the function exp(¢?) many times when we apply the
compound formula and we have only to calculate exp(z?) when we apply
the summation formula. (In fact, it is possible to find examples where the
summation formula is few dozen times faster than the compound formula.)

Similar summation formulas can be obtained for the integrals (special
functions): [ [(sint)/t] dt, [ [(cost —1)/t] dt, [ exp(—t?)dt, etc.
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