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Abstract

Because of applications in optimization problems, mathematical
programming, equilibrium problem and operations research, consid-
erable progresses have been achieved in both theory and applications
of vector variational-like inequalities. In this work, we consider vec-
tor variational-like inequalities with η-generally convex mappings and
prove some existence results for our inequalities in the setting of Haus-
dorff topological vector space. The results presented in this article are
more general and can be used to solve many known problems related to
vector variational inequalities, variational-like inequalities and vector
variational-like inequalities.
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1 Introduction

The vector variational inequalities in a finite-dimensional Euclidean space
was first introduced by Giannessi [6], which is the vector-valued version of
the variational inequality of Hartman and Stampacchia [7]. Many authors
studied several kinds of vector variational inequalities in abstract spaces [2,
3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

Ansari [1] introduced and considered vector variational-like inequalities in
the setting of reflexive Banach spaces. Since then, Lee et al. [12] and Siddiqi
et al. [15] have studied various kind of vector variational-like inequalities in
different directions. In this work, we consider vector variational-like inequal-
ities with η-generally convex mappings and prove some existence results for
our inequalities in the setting of Hausdorff topological vector spaces.

2 Preliminaries

Definition 1 The Hausdorff topological vector space Y is said to be an or-
dered space denoted by (Y, P) if ordering relations are defined in Y by a closed
convex cone P of Y as follows:

for all x, y ∈ Y, y 5 x ⇔ x− y ∈ P ,
for all x, y ∈ Y, y ≤ x ⇔ x− y ∈ P\{0} ,
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for all x, y ∈ Y, y 6≤ x ⇔ x− y 6∈ P\{0} .

If the interior of P, intP, is nonempty, then the weak ordering relations
in Y are also defined as follows:

for all x, y ∈ Y, y < x ⇔ x− y ∈ intP ,

for all x, y ∈ Y, y 6< x ⇔ x− y 6∈ intP .

Let X and Y be the real Hausdorff topological vector spaces and L(X, Y) be
the set of all linear continuous functions from X to Y. For l ∈ L(X, Y), the
value of the linear function l at x is denoted by 〈l, x〉. Let X∗ be the dual
space of X and Y∗ be the dual space of Y.

Throughout this article, unless otherwise specified, we assume that (Y, P) is
an ordered Hausdorff topological vector space with intP 6= ∅ .

Definition 2 Let E be a subset of a topological vector space X. A multivalued
mapping A : E → 2X is said to be a kkm mapping if, for each finite subset
{x1, . . . , xn} of E, co{x1, . . . , xn} ⊆

⋃n
i=1A(xi) , where coA denotes the convex

hull of the set A.

The following kkm theorem plays a crucial role in deriving existence
results for our problem.

Theorem 3 (KKM–Fan Theorem) Let E be a subset of a Hausdorff topo-
logical vector space X, let A : E → 2X be a kkm map. If for each x ∈ E ,
A(x) is closed, and if for at least one point x ∈ E , A(x) is compact, then
∩x∈EA(x) 6= ∅ .

Let X and Y be real Hausdorff topological vector spaces and K a subset
of X. Let T : X → L(X, Y) and η : K×K → K , then we introduce the following
vector variational-like inequality problem:

find x0 ∈ K such that for each z ∈ K , λ ∈ (0, 1]

〈T(λx0 + (1− λ)z), η(y, x0)〉 6∈ −intP, for all y ∈ K . (1)
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2.1 Special cases

1. If λ = 1 , then problem (1) reduces to the vector variational-like in-
equality problem introduced and studied by Siddiqi et al. [13]

find x0 ∈ K such that

〈Tx0, η(y, x0)〉 6∈ −intP, for all y ∈ K . (2)

2. If η(y, x0) = y − x0 , then problem (1) is equivalent to the following
vector variational inequality problem introduced and studied by Yu et
al. [18]

find x0 ∈ K such that for each z ∈ K , λ ∈ (0, 1]

〈T(λx0 + (1− λ)z), y− x0〉 6∈ −intP, for all y ∈ K ,

where T : X → L(X, Y) is a mapping and K− K ⊂ K .

Definition 4 Let T : X → L(X, Y) and η : K× K → K . Then T is said to be

1. η-monotone, if

〈Tx− Ty, η(x, y)〉 ∈ P, for all x, y ∈ K

2. η-hemicontinuous, if for all x, y ∈ K , the function t 7→ 〈T(ty + (1 −

t)x, η(x, y)〉 is continuous at 0+.

3. η-generally convex if for any x, y,w, z ∈ K ,

〈Tz, η(x,w)〉 6∈ −intP, and 〈Tz, η(y,w)〉 6∈ −intP

implies

〈Tz, η(λx+ (1− λ)y,w)〉 6∈ −intP, for all λ ∈ [0, 1].
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3 Existence theorems

We begin with the following lemma which is necessary for the proof of main
results of this article.

Lemma 5 Let X be a topological vector space, K a closed convex subset of X
and (Y, P) be an ordered topological vector space with intP 6= ∅ . Let T : X →
L(X, Y) be η-monotone and η-hemicontinuous mapping. Let η : K × K → K

be continuous and affine such that η(x, x) = 0 , for all x ∈ K . Then for each
z ∈ K , λ ∈ (0, 1] the following statements are equivalent.

Find x0 ∈ K such that

(i) 〈T(λx0 + (1− λ)z), η(y, x0)〉 6∈ −intP, for all y ∈ K ;

(ii) 〈T(λy+ (1− λ)z), η(y, x0)〉 6∈ −intP, for all y ∈ K .

Proof: Let z ∈ K , λ ∈ (0, 1]. We denote Tz(x) = T(λx + (1 − λ)z), where
x ∈ K . For every x, y ∈ K , because T is η-monotone, we have

1

λ
〈T(λx+ (1− λ)z) − T(λy+ (1− λ)z) ,

η(λx+ (1− λ)z, λy+ (1− λ)z) ∈ P ,

since η(·, ·) is affine and η(z, z) = 0 , we have

〈Tz(x) − Tz(y), η(x, y)〉 =
1

λ
〈T(λx+ (1− λ)z) − T(λy+ (1− λ)z) ,

η(λx+ (1− λ)z, λy+ (1− λ)z)〉 ∈ P .

Hence Tz : K → L(X, Y) is also η-monotone.
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Now we prove that the conclusion (i)⇒(ii). Let x0 be a solution of (i).
Since Tz is η-monotone, η(·, ·) is affine and η(x, x) = 0 ,

〈Tz(y) − Tz(x0), η(y, x0)〉 ∈ P , for all y ∈ K .

That is,

〈Tz(x0), η(y, x0)〉 ∈ 〈Tz(y), η(y, x0)〉− P , for all y ∈ K . (3)

Suppose to the contrary that (ii) were false. Then there exists y0 ∈ K such
that

〈T(λy0 + (1− λ)z), η(y0, x0)〉 ∈ −intP ,

that is,
〈Tz(y0), η(y0, x0)〉 ∈ −intP .

By (3) we obtain

〈Tz(x0), η(y0, x0)〉 ∈ 〈Tz(y0), η(y0, x0)〉− P .

Therefore
〈Tz(x0), η(y0, x0)〉 ∈ −intP − P ⊂ −intP ,

which contradicts (i).

Conversely, suppose that (ii) holds. Then x0 ∈ K satisfies

〈T(λy+ (1− λ)z), η(y, x0)〉 6∈ −intP , for all y ∈ K .

That is
〈Tz(y), η(y, x0)〉 6∈ −intP , for all y ∈ K .

For each y ∈ K , t ∈ (0, 1), we let yt = ty + (1 − t)x0 . Since K is convex,
thus yt ∈ K . Then we have

〈Tz(yt), η(yt, x0)〉 6∈ −intP .
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Since η(·, ·) is affine and η(x0, x0) = 0 , we have

〈T(λ(ty+ (1− t)x0) + (1− λ)z), tη(y, x0)〉 6∈ −intP .

That is

〈T(λ(x0 + t(y− x0)) + (1− λ)z), η(y, x0)〉 6∈ −intP .

Considering T is η-hemicontinuous, let t → 0+, we have

〈T(λx0 + (1− λ)z), η(y, x0)〉 6∈ −intP , for all y ∈ K .

This completes the proof. ♠

By Lemma 5, we obtain the following theorem.

Theorem 6 Let X be a real Hausdorff topological vector space and let K be a
compact and convex subset of X, and (Y, P) be an ordered topological vec-
tor space with intP 6= ∅ . Let T : X → L(X, Y) be η-monotone and η-
hemicontinuous. Let η : K × K → K be a continuous affine mapping such
that η(x, x) = 0 , for all x ∈ K . Then, problem (1) is solvable, that is, for
every z ∈ K , λ ∈ (0, 1], there exists x0 ∈ K such that

〈T(λx0 + (1− λ)z, η(y, x0)〉 6∈ −intP , for all y ∈ K .

Proof: For y ∈ K , we define

A1(y) = {x ∈ K : 〈T(λx+ (1− λ)z), η(y, x)〉 6∈ −intP}

A2(y) = {x ∈ K : 〈T(λy+ (1− λ)z), η(y, x)〉 6∈ −intP}

The proof is divided into the following three steps.
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1. A1 : K → 2K is a kkm-mapping:

Since y ∈ A1(y), A1(y) 6= ∅ . Assume that there exists a finite subset
{y1, . . . , yn} ⊂ K , and ti ≥ 0 , i = 1, . . . , n with

∑n
i=1 ti = 1 , such that

x =

n∑
i=1

tiyi 6∈
n⋃

i=1

A1(yi).

Clearly, x 6∈ A1(yi), i = 1, . . . , n . We have

〈T(λx+ (1− λ)z), η(yi, x)〉 ∈ −intP , i = 1, . . . , n .

Then 〈T(λx+ (1− λ)z), η(yi,
∑n

i=1 tiyi)〉

=

n∑
i=1

ti〈T(λx+ (1− λ)z), η(yi, yi)〉 ∈ −intP .

Since η(·, ·) is affine and η(yi, yi) = 0 , we have 0 ∈ −intP , which is a
contradiction.

Hence A1 is a kkm mapping.

2.
⋂

y∈KA1(y) =
⋂

y∈KA2(y).

If x ∈ A1(y), then

〈T(λx+ (1− λ)z), η(y, x)〉 6∈ −intP .

Since T is η-monotone, η(·, ·) is affine and η(z, z) = 0 , Tz is also η-
monotone. We have

〈T(λy+ (1− λ)z) − T(λx+ (1− λ)z), η(y, x)〉 ∈ P .

That is,

〈T(λx+ (1− λ)z), η(y, x)〉 ∈ 〈T(λy+ (1− λ)z), η(y, x)〉− P .
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Suppose that x 6∈ A2(y), we have

〈T(λy+ (1− λ)z), η(y, x)〉 ∈ −intP .

or
〈T(λx+ (1− λ)z), η(y, x)〉 ∈ −intP − P ⊂ −intP ,

which contradicts x ∈ A1(y).

Therefore, x ∈ A2(y), that is, A1(y) ⊂ A2(y). Then⋂
y∈K

A1(y) ⊂
⋂
y∈K

A2(y).

On the other hand, suppose that x ∈
⋂

y∈KA2(y). We have

〈T(λy+ (1− λ)z), η(y, x) 6∈ −intP , for all y ∈ K .

By Lemma 5, we obtain

〈T(λx+ (1− λ)z), η(y, x) 6∈ −intP , for all y ∈ K .

That is, x ∈
⋂

y∈KA1(y).

Hence
⋂

y∈KA1(y) ⊃
⋂

y∈KA2(y). So,
⋂

y∈KA1(y) =
⋂

y∈KA2(y).

3.
⋂

y∈KA2(y) 6= ∅ .

Since y ∈ A2(y), A2(y) 6= ∅ . By 2, we know A1(y) ⊂ A2(y). By 1, we
know that A1 is a kkm mapping. Then A2 is also a kkm mapping.

Now, we prove that for any y ∈ K , A2(y) is closed-valued. Assume
that there exists a net {xn} ⊂ A2(y) such that xn → x ∈ K . Because

〈T(λy+ (1− λ)z), η(y, xn)〉 6∈ −intP, for all n,

we have
〈T(λy+ (1− λ)z), η(y, x)〉 6∈ −intP .

Hence x ∈ A2(y).
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It follows from the compactness of K and closedness of A2(y) ⊂ K , that
A2(y) is compact. By the kkm theorem, we have

⋂
y∈KA2(y) 6= ∅ , and

also
⋂

y∈KA1(y) 6= ∅ .

Hence there exists

x0 ∈
⋂
y∈K

A1(y) =
⋂
y∈K

A2(y) ;

that is, there exists x0 ∈ K such that

〈T(λx0 + (1− λ)z), η(y, x0)〉 6∈ −intP , for all y ∈ K ,

that is, x0 is the solution of the problem (1).

♠

The following Theorem 7 is proved in a different setting than Theo-
rem 2.1 of Ansari [1]. We take T : X → L(X, Y) to be η-monotone, η-
hemicontinuous and η-generally convex, although Ansari [1] considered T to
be η-pseudomonotone and V-hemicontinuous.

Theorem 7 Let X be a reflexive Banach space, (Y, P) an ordered topological
vector space with intP 6= ∅ . Let K be a nonempty, bounded and convex subset
of X. Let η : K × K → K be a continuous and affine such that η(x, x) = 0

for all x ∈ K . Let T : X → L(X, Y) be η-monotone, η-hemicontinuous and
η-generally convex on K. Then problem (1) is solvable.

Proof:

A1(y) = {x ∈ K : 〈T(λx+ (1− λ)z), η(y, x)〉 6∈ −intP} ,

A2(y) = {x ∈ K : 〈T(λy+ (1− λ)z), η(y, x)〉 6∈ −intP} ,
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where y, z ∈ K , λ ∈ (0, 1].

By using the proof of Theorem 6, we know that A2 is a kkm mapping
and A2(y) is closedly valued. We also know that⋂

y∈K

A1(y) =
⋂
y∈K

A2(y).

Because K is bounded, closed, convex and X is a reflexive Banach space,
therefore K is weakly compact.

Now, we prove that A2(y) is convex. Suppose that y1, y2 ∈ A2(y) and
t1, t2 ≥ 0 with t1 + t2 = 1 . Then

〈T(λy+ (1− λ)z, η(y, yi)〉 6∈ −intP , i = 1, 2 .

Since T is η-generally convex,

〈T(λy+ (1− λ)z, η(y, t1y1 + t2y2)〉 6∈ −intP ,

that is, t1y1 + t2y2 ∈ A2(y). Hence A2(y) is convex. Since A2(y) is closed
and convex, A2(y) is weakly closed.

Considering that A2(y) is a kkm mapping and A2(y) is a weakly closed
subset of K, A2(y) is weakly compact. By using the kkm theorem, there
exists x0 ∈ K such that x0 ∈

⋂
y∈KA1(y) =

⋂
y∈KA2(y) 6= ∅ . That is, there

exists x0 ∈ K such that

〈T(λx0 + (1− λ)z, η(y, x0)〉 6∈ −intP , for all y ∈ K .

Hence problem (1) is solvable. ♠
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