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Abstract

Because of applications in optimization problems, mathematical
programming, equilibrium problem and operations research, consid-
erable progresses have been achieved in both theory and applications
of vector variational-like inequalities. In this work, we consider vec-
tor variational-like inequalities with 1-generally convex mappings and
prove some existence results for our inequalities in the setting of Haus-
dorff topological vector space. The results presented in this article are
more general and can be used to solve many known problems related to
vector variational inequalities, variational-like inequalities and vector
variational-like inequalities.
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1 Introduction

The vector variational inequalities in a finite-dimensional Fuclidean space
was first introduced by Giannessi [6], which is the vector-valued version of
the variational inequality of Hartman and Stampacchia [7]. Many authors
studied several kinds of vector variational inequalities in abstract spaces [2,
3,4,5,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

Ansari [1] introduced and considered vector variational-like inequalities in
the setting of reflexive Banach spaces. Since then, Lee et al. [12] and Siddiqi
et al. [15] have studied various kind of vector variational-like inequalities in
different directions. In this work, we consider vector variational-like inequal-
ities with n-generally convex mappings and prove some existence results for
our inequalities in the setting of Hausdorff topological vector spaces.

2 Preliminaries

Definition 1 The Hausdorff topological vector space Y is said to be an or-
dered space denoted by (Y, P) if ordering relations are defined in'Y by a closed
convex cone P of Y as follows:

forall x,yeY, ys<x&x—yecP,
forall x,y€yY, y<x&x—ycP\[0},



2  Preliminaries E35

forall x,yeyY, yLxsx—y<&P\{0}.

If the interior of P, int P, is nonempty, then the weak ordering relations
in Y are also defined as follows:

forall x,yeY, y<x&Sx—ye€intP,
forall x,yeyY, y£x&Sx—y<&intP.

Let X and Y be the real Hausdorff topological vector spaces and L(X,Y) be
the set of all linear continuous functions from X to Y. For 1 € L(X,Y), the
value of the linear function 1 at x is denoted by (1,x). Let X* be the dual
space of X and Y* be the dual space of Y.

Throughout this article, unless otherwise specified, we assume that (Y, P) is
an ordered Hausdorff topological vector space with int P # ().

Definition 2 Let E be a subset of a topological vector space X. A multivalued
mapping A : E — 2X is said to be a KKM mapping if, for each finite subset
{x1,...,xn} of E, co{x1,...,xn} C Ui A(xi) , where coA denotes the convex
hull of the set A.

The following KKM theorem plays a crucial role in deriving existence
results for our problem.

Theorem 3 (KKM-Fan Theorem) LetE be a subset of a Hausdorff topo-
logical vector space X, let A : E — 2X be a KKM map. If for each x € E,
A(x) is closed, and if for at least one point x € E, A(x) is compact, then

MxeeA(x) # 0.

Let X and Y be real Hausdorff topological vector spaces and K a subset
of X. Let T: X = L(X,Y) and n : KxK — K, then we introduce the following
vector variational-like inequality problem:

find xo € K such that for each z € K, A € (0,1]

(T(Axo+ (1 —A)z), n(y,x0)) € —int P, for ally € K. (1)
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2.1 Special cases

1. If A = 1, then problem (1) reduces to the vector variational-like in-
equality problem introduced and studied by Siddiqi et al. [13]

find x¢ € K such that
(Txo, N(y,x0)) & —int P, for all y € K. (2)

2. If n(y,x0) =y — X0, then problem (1) is equivalent to the following
vector variational inequality problem introduced and studied by Yu et

al. [18]

find x¢ € K such that for each z € K, A € (0,1]
(T(Axo+ (1 —A)z), y —xo) € —int P, for ally € K,

where T : X — L(X,Y) is a mapping and K — K C K.

Definition 4 Let T: X = L(X,Y) andn: K x K — K. Then T is said to be

1. m-monotone, if

(Tx — Ty, n(x,y)) € P, forallx,y € K

2. n-hemicontinuous, if for all x,y € K, the function t — (T(ty + (1 —
t)x, n(x,y)) is continuous at 0F.

3. m-generally convex if for any x,y,w,z € K,
(Tz, n(x,W)) & —intP, and (Tz, n(y,w)) & —intP
implies

(Tz, n(Ax 4+ (1 = A)y,w)) € —int P, for all A € [0,1].
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3 Existence theorems

We begin with the following lemma which is necessary for the proof of main
results of this article.

Lemma 5 Let X be a topological vector space, K a closed convex subset of X
and (Y, P) be an ordered topological vector space with intP # (. Let T: X —
L(X,Y) be n-monotone and n-hemicontinuous mapping. Let 1 : K x K — K
be continuous and affine such that n(x,x) =0, for allx € K. Then for each
z € K, A€ (0,1] the following statements are equivalent.

Find xo € K such that

(Z) < )\X0+ ] _)\)Z)> n(U>XO)> g —Z’ﬂtP, fOT’ (l”y € K;
(1) (T(Ay + (1 —A)z), n(y,xo0)) &€ —intP, for ally € K.

Proof: Let z € K, A € (0,1]. We denote T,(x) = T(Ax + (1 — A)z), where
x € K. For every x,y € K, because T is n-monotone, we have

%(T(Aer (1=A)z) =T(Ay + (1 —=A)z),

NnAx+ (1—A)z, Ay + (1 —A)z) € P,

since (-, -) is affine and n(z,z) = 0, we have

(To(x) = T2(y), n(x,v)) = %(T(Aer (1=A)z) = T(Ay + (1 = A)z),
nAx+ (1 =Nz, Ay + (1 —A)z)) € P.

Hence T, : K — L(X,Y) is also n-monotone.
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Now we prove that the conclusion (i)=(ii). Let xo be a solution of (i).
Since T, is n-monotone, 1(-,-) is affine and n(x,x) =0,

(T.(y) — T(x0), n(y,x0)) € P, forally € K.

That is,

(T=(x0), n(y,x0)) € (T2(y), n(y,x0)) =P, forally e K. (3)

Suppose to the contrary that (ii) were false. Then there exists yo € K such
that
(T(Ayo + (1 —A)z), n(yo,x0)) € —int P,

that is,
(T2(yo), n(yo,x0)) € —int P..

By (3) we obtain
(T=(x0), n(yo,%0)) € (T=(yo), N(yYo,%0)) — P.

Therefore
(T.(x0), N(Yo,Xxo)) € —int P —P C —int P,

which contradicts (i).

Conversely, suppose that (ii) holds. Then xq € K satisfies
(TAYy + (1 —A)z), n(y,x0)) &€ —int P, for all y € K.

That is

(T=(y), n(y,x0)) & —intP, forall yeK.
For eachy € K, t € (0,1), we let yy = ty + (1 — t)xo. Since K is convex,
thus y; € K. Then we have

(T2(y+), n(ye, x0)) € —int P.
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Since n(-, -) is affine and 1(xo,x¢) = 0, we have
(TA(ty + (1 —t)xo) + (1 = A)z), tn(y,x0)) & —int P.
That is
(T(Axo + t{y —x0)) + (1 = A)z), n(y, xo)) & —int P.
Considering T is -hemicontinuous, let t — 0", we have
(T(Axo+ (1 —A)z), n(y,x0)) € —int P, for ally € K.

This completes the proof. e

By Lemma 5, we obtain the following theorem.

Theorem 6 Let X be a real Hausdorff topological vector space and let K be a
compact and conver subset of X, and (Y,P) be an ordered topological vec-
tor space with mtP # 0. Let T : X — L(X,Y) be n-monotone and n-
hemicontinuous. Letn : K x K — K be a continuous affine mapping such
that n(x,x) = 0, for all x € K. Then, problem (1) is solvable, that is, for
every z € K, A € (0,1], there exists xo € K such that

(TAxo+ (1 —A)z, n(y,x0)) € —intP, forally € K.

Proof: Fory € K, we define

Ai(y) ={x € K: (T(Ax + (1 —A)z), n(y,x)) & —int P}
Az(y) ={x € K: (T(Ay + (1 =)z}, n(y,x)) & —int P}

The proof is divided into the following three steps.
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1. A;: K — 2Kis a KKM-mapping:

Since y € A1(y), A1(y) # (0. Assume that there exists a finite subset
{ur,...,yunJ CK,and t; > 0,1=1,... , nwith ) ' ;t; =1, such that

x=> tyi & JAi(vo).
i=1 i=1
Clearly, x € Aq1(yi),1=1,...,n. We have
(T + (1 —=A)z), n(yy,x)) € —int P, i=1,...,n.

Then (T(Ax + (1 —A)z), n(ys, 214 tis))

= > t(T(Ax+ (1=A)z), n(ys, 1)) € —int P,

i=1

Since n(-, -) is affine and n(yi,yi) =0, we have 0 € —int P, which is a
contradiction.

Hence A; is a KKM mapping.

2' myeK A1 (U) - myeKAZ(y)'
If x € Aq(y), then

(TAx 4+ (1 =A)z), n(y,x)) & —int P.

Since T is n-monotone, n(-,-) is affine and n(z,z) = 0, T, is also n-
monotone. We have

(TAy+ (1 =A)z) = T(Ax + (1 = A)z), n(y,x)) € P.
That is,

(T(Ax + (T =A)z), n(y,x)) € (T(Ay + (1 = A)z), n(y,x)) —P.
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Suppose that x € A,(y), we have

or
(TAx+ (1 =A)z), n(y,x)) € —int P—P C —int P,

which contradicts x € A;(y).

Therefore, x € A,(y), that is, A;(y) € Az(y). Then

(A1(y) € () Aly)
yeK yekK

On the other hand, suppose that x € (y). We have

yek A
(TAYy+ (1 —=A)z), n(y,x) &€ —int P, for ally € K.
By Lemma 5, we obtain
(TAx+ (1 —AN)z),n(y,x) € —int P, forally € K.
That is, x € ﬂyeK (y).
Hence ﬂyeK ) D ﬂyeKAz . So, ﬂyeKA1 ﬂyeKAz y).

3. myeKAz y) 75@

Sincey € Az(y), Az(y) # 0. By 2, we know A;(y) C Az(y). By 1, we
know that A; is a KKM mapping. Then A; is also a KKM mapping.

Now, we prove that for any y € K, A(y) is closed-valued. Assume
that there exists a net {x,} C As(y) such that x,, — x € K. Because

(TAAY + (1 —A)z), n(y,xn)) € —int P, for all n,

we have
(TAy + (1 =A)z), n(y,x)) ¢ —int P.
Hence x € A,(y).
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It follows from the compactness of K and closedness of A,>(y) C K, that
A>(y) is compact. By the KKM theorem, we have ﬂyeKAZ(U) # (0, and

also (yex A1(y) # 0.

Hence there exists

xo € [ Aily) =) Az2lv);

that is, there exists xo € K such that
(T(Axo+ (1 —A)z), n(y,x0)) € —int P, forally € K,

that is, xo is the solution of the problem (1).

&

The following Theorem 7 is proved in a different setting than Theo-
rem 2.1 of Ansari [1]. We take T : X — L(X,Y) to be n-monotone, n-
hemicontinuous and n-generally convex, although Ansari [1] considered T to
be n-pseudomonotone and V-hemicontinuous.

Theorem 7 Let X be a reflexive Banach space, (Y, P) an ordered topological
vector space with intP # (. Let K be a nonempty, bounded and convex subset
of X. Letn : K x K — K be a continuous and affine such that n(x,x) = 0
for allx € K. Let T: X — L(X,Y) be n-monotone, n-hemicontinuous and
n-generally convex on K. Then problem (1) is solvable.

Proof:

Aily) ={x e K: (T(Ax+ (1 =A)
Az(y) ={x € K: (T(Ay + (1 — A)z),

(Uax)> ¢ —int P})
(y>X)> ¢ _Hlt P})

L
3 3
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where y,z € K, A € (0, 1].

By using the proof of Theorem 6, we know that A, is a KKM mapping
and A;(y) is closedly valued. We also know that

ﬂ Aily) = ﬂ Az(y).
yeK yekK
Because K is bounded, closed, convex and X is a reflexive Banach space,

therefore K is weakly compact.

Now, we prove that A;(y) is convex. Suppose that yi1,y2 € Az(y) and
t1,t, > 0 with t; +t, =1. Then
(TAy + (1 =Nz, n(y,yi)) € —int P, i=1,2.
Since T is n-generally convex,
(T + (1 = A)z, nly, t1yr + tay2)) € —int P,

that is, tyy; + toy2 € Az(y). Hence A5(y) is convex. Since A;(y) is closed
and convex, A;(y) is weakly closed.

Considering that A,(y) is a KkM mapping and A,(y) is a weakly closed
subset of K, A,(y) is weakly compact. By using the KKM theorem, there
exists xo € K such that xo € (,cx A1(y) =y A2(y) # 0. That is, there
exists xg € K such that

(T(Axo+ (1 —A)z, n(y,x0)) € —int P, forall yeK.
Hence problem (1) is solvable. o
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