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The harmonic mean renormalises random
diffusion across a spatial multigrid
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Abstract

Most methods for modelling dynamics posit just two time scales: a
fast and a slow scale. But many applications, such as the diffusion in
a random media considered here, possess a wide variety of space-time
scales. Consider the microscale diffusion on a one dimensional lattice
with arbitrary diffusion coefficients between adjacent lattice points. I
develop a slow manifold approach to model the diffusion, with some
rigorous support, on a lattice that is coarser by a factor of four: the
coarser scale effective diffusion coefficients are the harmonic mean of
fine scale coefficients. Then iterating the analytic mapping of random
diffusion from the finer grid to the coarser grid generates a hierarchy of
models on a spatial multigrid across a wide range of space-time scales,
all with rigorous support. The one step harmonic mean renormalises
to harmonic means for the effective diffusion coefficients across the
entire hierarchy.
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1 Introduction

Research in the past decade provides new views of issues involved in modelling
dynamics in classical physics and engineering [15, 17, e.g.]. We seek to better
understand the relation between microscale and macroscale models, and how
to transform from one level of description to another [20, 18, e.g.].

For example, a critical issue in material science is the effective large scale
properties of a composite material with significant microscopic structure. A
canonical problem is the effective large scale diffusion through a domain with
microscopic variations in diffusion coefficient [1, 2, 19, e.g.]. Here we trans-
form diffusion on a fine grid, with arbitrary fine grid variations in diffusivity,
into diffusion onto a coarser grid. The new result is that, to leading order,
the coarse grid diffusion is a harmonic mean of the local fine grid diffusion.

Most methods for modelling dynamics posit just two time scales: a fast and
a slow scale [7, 8, 13, e.g.]. But many applications possess a wide variety
of interesting space-time scales [3, 7, e.g.]. Recent research introduced a
methodology, with support from centre manifold theory, for changing the
resolved spatial grid scale by just a factor of two [18]. Here we develop the
methodology to better preserve the self-adjoint nature of random diffusion.
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Figure 1: schematic transformation of diffusion on a fine grid (black)
mapped, (1)7→(2), into equivalent diffusion on a grid coarser by a factor
of four (blue) with diffusivities depending only on the local fine scale diffu-
sivities.

As shown schematically in Figure 1, Section 2 invokes centre manifold the-
ory to support that the self-adjoint evolution of discrete diffusion on a one
dimensional, fine grid, with arbitrary spatially varying diffusivity,

dui

dt
= κi−1/2ui−1 − (κi−1/2 + κi+1/2)ui + κi+1/2ui+1 (1)

is mapped to self-adjoint dynamics on a coarser grid as

dUj

dt
≈ 1

16

[
K̄j−1/2Uj−1 − (K̄j−1/2 + K̄j+1/2)Uj + K̄j+1/2Uj+1

]
, (2)

where the coarser scale diffusivities

K̄j =
4

κ−14j−2 + κ
−1
4j−1 + κ

−1
4j+1 + κ

−1
4j+2

,

are a harmonic mean over microgrid diffusivities and where the fine grid
index i = 4j . This mapping of dynamics from a finer grid to a grid coarser
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via a factor of four, via finite elements formed from a small number of fine
grid points, may then be iterated to generate a hierarchy of models across a
wide range of spatial scales, with the theory of centre manifolds to support
the modelling across the whole hierarchy of length scales.

It is well known that macroscale (system wide) homogenisation of microscale
diffusivity variations (in 1D) is the harmonic mean [9, 13, e.g.]; here we find
the new result that, because the harmonic mean of an harmonic mean is
another harmonic mean, it is reasonable to homogenise diffusion with the
harmonic mean at all scales. This approach promises to empower us with
great flexibility in modelling other complex dynamics over multiple scales.

Most two scale modelling methods can also be applied over many scales.
However, most established methods require each such application to be based
upon a large ‘spectral gap’: a parameter such as ε measures the scale sep-
aration, and invoking “as ε → 0” provides the extreme scale separation.
In contrast, multigrid iteration for solving linear equations transforms be-
tween length scales that are different by (usually) a factor of two [5, 14, 4,
e.g.]. Analogously, Section 3 introduces modelling dynamics on a hierarchy
of length scales that differ by a factor of two and hence the ‘spectral gap’ is
finite, not infinite as required by popular extant, non-multigrid, methods for
modelling dynamics. The finite domain support provided by centre manifold
theory empowers modelling dynamics with such a finite spectral gap.

The key to this modelling transformation of lattice dynamics is the coupling
between finite elements. On the one hand we require coupling that ensures
high order and classic consistency between the coarse model and the original
fine lattice dynamics [12]; but on the other hand we require coupling which
results in the coarse grid dynamics also preserving the self-adjoint symmetries
of the fine grid lattice dynamics [16]. The innovation here is the coupling
between finite elements that preserves the self-adjoint nature of diffusion as
seen in the form of the coarse grid homogenisation (2).

Section 2 describes how to divide fine grid lattice dynamics into small finite
elements (Figure 2), via interelement coupling rules that preserve self-adjoint
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Figure 2: divide the fine lattice, bottom, into overlapping finite elements,
middle, in order to derive evolution equations for coarse lattice variables Uj,
top. The fine lattice dynamics are applied to variables of the closed circles in
the elements, whereas the variables of the open circles are used to implement
self-adjoint coupling conditions.

symmetries, and then establishes the centre manifold support for the result-
ing coarse grid models. Although Section 2 seeks to coarsen the lattice by a
factor of two, it eventuates that the leading order homogenisation coarsens
by a factor of four as in (1) 7→(2), and shown Figure 1.

2 Coarsen lattice diffusion by a scale factor

of two

This section discusses an appealing way to transform the dynamics of vari-
ables ui(t) on a one dimensional fine lattice of spacing h, into dynamics of
variables Uj(t) on a coarser lattice of spacing H = 2h .

Figure 2 schematically shows that the jth element stretches from a neighbour-
hood of Xj−1 to a neighbourhood of Xj+1. Figure 2 also shows each element
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is divided into two halves, and the variables duplicated so that, notionally,
u2j = vj−1,6 = vj,2 = vj,4 = vj+1,0 and u2j+1 = vj−1,7 = vj,3 = vj,5 = vj+1,1 .
We appear to need to split each element into two halves in order to preserve
self-adjoint symmetry of the diffusion [16]. Embed the fine grid dynamics
in these overlapping elements in a state space of double the dimensionality
by treating vj−1,6 and vj,2, and vj,5 and vj+1,1 as independently evolving vari-
ables. For definiteness, suppose the original fine grid domain is 2m-periodic,
so that the grid is divided into m elements that are m-periodic in coarse grid
index j.1 Analogous overlap of finite elements are increasingly being used in
multiscale modelling [8, 19, 10, e.g.]. In essence we take one step back by the
embedding, and then two steps forward via the centre manifold modelling.

The arbitrary diffusion, fine lattice, dynamics (1) embedded on the overlap-
ping elements satisfy the differential-algebraic equation

D~̇vj = Lj~vj , j = 1, . . . ,m , (3)

where ~vj = (vj,0, . . . , vj,7), D = diag(0, 1, 1, 0, 0, 1, 1, 0), and the diffusivity/
coupling matrix Lj has four rows for fine scale dynamics and four rows for
inter-element coupling parametrised by γ and its complement γ ′ = 1− γ :

Lj =

[
L1,1 L1,2
L2,1 L2,2

]
for the four sub-blocks (4)

L1,1 =


−κ2j−2 +κ2j−2 0 −(γ ′ + γε̄−)κ2j
+κ2j−2 −κ2j−2 − κ2j−1 +κ2j−1 0

0 +κ2j−1 −κ2j−1 − κ2j +κ2j
−κ2j(γ

′ + γε̄+) 0 +κ2j −κ2j

 ,

L2,2 =


−κ2j +κ2j 0 −κ2j(γ

′ + γε̄−)
+κ2j −κ2j − κ2j+1 +κ2j+1 0

0 +κ2j+1 −κ2j+1 − κ2j+2 +κ2j+2
−(γ ′ + γε̄+)κ2j 0 +κ2j+2 −κ2j+2

 ,

L1,2 = diag[(γ ′ + γε̄−)κ2j, 0, 0, κ2j(γ
′ + γε̄−)],

1The resulting models, being local in space, are valid sufficiently far from physical
boundaries.
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L2,1 = diag[κ2j(γ
′ + γε̄+), 0, 0, (γ

′ + γε̄+)κ2j],

where ε̄± denotes the shift operators from one element to its neighbours:
that is, ε̄±vj,i = vj±1,i . Then, since ε̄±κ2jvj,i = κ2j±2vj±1,i , the system of
matrix operators on the right-hand side of (3) is self-adjoint for all coupling
parameter γ.

Centre manifold theorems support a coarse model Rigourous theo-
retical support is based upon the decoupled (γ = 0) dynamics. The embed-
ded, fine grid dynamics (3) has an m-dimensional subspace E0 of equilibria:
γ = 0 and vj,i = Uj constant in each of the m elements. Here, consis-
tent with Figure 2, choose the coarse variables Uj to be the average of the
mid-element values on the fine grid in each element. In the case when the
diffusivities κi are identical, the fine grid dynamics (3) on each element, lin-
earised about E0, has spectrum proportional to {0,−2/3,−2,−4} —the zero
eigenvalue corresponds to the fine grid field vj,i being constant in each ele-
ment. When κi varies, elementary algebra shows that provided all κj > 0 and
all 2κ2j(κ2j−2 + κ2j+2) − κ2j−2κ2j+2 > 0 , then the spectrum remains as one
zero eigenvalue with the other three being negative. Consequently, centre
manifold theory assures us of the following corollary [6, 11, e.g.].

Corollary 1 (slow manifold) With the above proviso, in some finite neigh-
bourhood of the subspace E0:

1. there exists a (m + 1) dimensional slow manifold M0 of the fine grid,
element dynamics (3), and the slow manifold M0 may be written, for
some ~vj and gj, j = 1, . . . ,m , as

~vj = ~vj(~U,γ) such that U̇j =
dUj

dt
= gj(~U,γ) ; (5)

2. the dynamics on M0 is emergent in that from all initial conditions in
some finite neighbourhood of M0, there exists a solution of (5) ap-
proached exponentially quickly in time by the solution of (3);
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3. the order of error in the coupling parameter γ of an approximation to
the slow manifold M0 and its evolution, (5), is the same as the order
of the residuals of the governing dynamics (3) when evaluated at the
approximation.

I emphasise that this strong theoretical support applies in a finite neighbour-
hood of the decoupled case γ = 0 . I anticipate that the neighbourhood is
large enough to include the physical case of full coupling, γ = 1 , as occurs
in similar problems where evidence indicates both convergence and classic
consistency at full coupling [12, e.g.].

3 The slow manifold homogenises random

diffusion

Part 3 of the preceding corollary underlies the computer algebra that con-
structs the slow manifold model. In outline, given any approximation to the
slow manifold and the evolution thereon, approximating (5), the algorithm
evaluates the residual of the governing fine grid equations and coupling con-
ditions (3), and then improves the approximation from the residual. This
evaluation and improvement continues iteratively until the residual is small
enough in terms of orders of the coupling parameter γ. The corollary then
assures us that the slow manifold is approximated to errors of the same order
in coupling parameter γ.

Executing the algorithm code2 generates the following as the leading order

2http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/rt/suppFiles/2176

links to a supplementary file of the computer algebra code to construct the slow manifold.

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/rt/suppFiles/2176
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correction to the fine grid structure:

~vj =



1

1

1

1

1

1

1

1


Uj + γ

1

8
Kj



−κ−12j − 2κ−12j−1 − 2κ
−1
2j−2

−κ−12j − 2κ−12j−1
−κ−12j
κ−12j
−κ−12j
κ−12j

κ−12j + 2κ−12j+1
κ−12j + 2κ−12j+1 + 2κ

−1
2j+2


(Uj+1 −Uj−1) + O

(
γ2
)
, (6)

where the local harmonic mean of the diffusivities is

Kj =
4

κ−12j−2 + κ
−1
2j−1 + κ

−1
2j+1 + κ

−1
2j+2

. (7)

In essence, this fine grid structure reduces to linear interpolation when all the
diffusivities are the same, but reflects the internal variations in the fine grid
field when the diffusivities vary. Terms of higher order in coupling γ reflect
more about the dynamics of fine grid structures, but are far to complicated
to record here.

The computer algebra code correspondingly finds that the evolution on the
slow manifold is

dUj

dt
= γ2 1

16
[Kj−1Uj−2 − (Kj−1 +Kj+1)Uj +Kj+1Uj+2] + O

(
γ3
)
. (8)

Interestingly, there is no evolution at O
(
γ
)

in the coupling, we compute
to O

(
γ2
)

to find the leading order evolution. Consequently, our attempt to
coarsen random diffusion by a factor of two in scale fails; our approach actu-
ally coarsens by a factor of four in scale—because the leading order model (8)
only involves every second coarse grid point, Uj and Uj±2. Upon relabelling
the coarse grid points, so that K̄j = K2j for example, and evaluating at full
coupling γ = 1, the slow manifold evolution (8) becomes the homogenised
coarse grid model (2) discussed in the Introduction.
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Observe that (8), and hence (2), are self-adjoint. But even more beautiful is
that the effective diffusivity on the coarse grid is local : in (8) the diffusiv-
ity Kj±1 governing the flux between coarse grid points Xj and Xj±2 depends
only upon the fine scale diffusivities between Xj and Xj±2, namely between
κ2j and κ2j±4, from (7). This beautiful localisation is not built into our ap-
proach, but appears as a natural consequence of this scheme to preserve
self-adjoint properties.3

Modelling should be transitive The slow coarse grid evolution (8) in
turn may be modelled on an even coarser grid by the same process and
same theoretical support to give a superslow model. Since a slow manifold
is composed of subsets of solutions, and such a superslow manifold would be
composed of a subset of the slow solutions, then the superslow manifold is
composed of a subset of solutions of the fine scale dynamics. Our modelling
is transitive: a coarser grid model of a coarse model will be the same as
coarser grid model of the original fine grid dynamics.

Consequently, albeit approximate due to the truncation in coupling, the
transformation (1)7→(2) of dynamics is justifiably applied across a multi-
grid hierarchy where each level of the grid is a factor of four coarser than its
neighbouring finer grid. The transformation (1) 7→(2) is effected by comput-
ing a harmonic mean of the finer grid diffusivities. But, as mentioned in the
Introduction, a harmonic mea of a harmonic mean is just another harmonic
mean, consequently at each level in the multigrid hierarchy the diffusivity
at any locale at that level is a harmonic mean of the ‘local’ diffusivities at
any of the levels below. This harmonic mean connects to the now classic 1D
result from averaging [9, 13, e.g.] that when the microstructure is on scale ε
relative to the macroscale, then as ε→ 0 (‘infinite gap’) the macroscale effec-

tive diffusion coefficient is the harmonic mean κH =
[ ∫

D
κ(x)−1dx

]−1
. The

3I also computed the model cubic in coupling γ. A sample of the 61, 243 terms in
its unfactored form suggest that these appealing properties also hold to at least the next
order in coupling.
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novelty here is that centre manifold theory justifies the use of the harmonic
mean of the fine scale diffusivities at all length scales between the microscale
and the macroscale.

4 Conclusion

The finite domain support of centre manifold theory empowers great flexibil-
ity in modelling dynamics. Here we used the theory to justify modelling on a
coarser grid the dynamics between interacting elements where each element
possesses fine grid scale diffusion with arbitrary diffusion coefficients. The
effective diffusivity on any coarser scale is then a harmonic mean of the fine
scale diffusivities.

In applying the same technique to other problems, note that the transforma-
tion from one scale to another is generally nonlinear even for linear dynam-
ics [18]; for example, here the harmonic mean is the nonlinear map for linear
diffusion. Thus in other problems expect qualitatively different dynamics to
emerge on different length scales through the nonlinear transformation of the
model from one length scale to another.
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