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The stream volume of fluid advection
algorithm

Dalton J.E. Harvie∗ David F. Fletcher∗

(Received 7 August 2000)

Abstract

The Volume of Fluid (vof) method is a powerful tool for modelling
the movement of free surface fluid flows. In this paper, a new vof
advection algorithm is presented, termed the Stream scheme. The al-
gorithm uses a linear piecewise method for free surface reconstruction,
coupled to a unique fully multidimensional method of cell boundary
flux integration. Comparisons with other vof advection algorithms
show the performance of the new scheme to be good.
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1 Introduction

The Volume of Fluid (vof) method is a convenient and powerful tool for
modelling fluid flows which contain a free surface [3]. Under the vof method,
fluid location is recorded using a volume of fluid function. In a single fluid
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calculation, this function is defined as unity within fluid regions, and zero
elsewhere. In numerical fluid simulations, where the vof function is averaged
over each computational cell, the function becomes one in cells containing
only fluid, zero in cells containing no fluid, and between these values in cells
which contain a free surface. The method used to advect the vof function
is the subject of this work.

In order to preserve the discrete nature of the fluid free surface interfaces,
current vof advection algorithms employ a two stage process. Firstly, free
surface interfaces are ‘reconstructed’ from the vof data, so that a geomet-
rical profile is found which approximates the actual free surface location.
Changes in vof values are then calculated by integrating fluid fluxes over
cell boundaries, using the geometrical profile to indicate the location of fluid
regions.

Excellent reviews of past and present vof advection methods have been
given by Rider and Kothe [6] and Rudman [7], so only a brief overview of some
of the methods available will be given here. The different advection methods
can be loosely classified according to the technique used to reconstruct the
free surfaces in each cell, and by the method used to perform the boundary
flux integrations [6].

vof advection methods that represent free surface interfaces as lines di-
rected parallel to one of the grid coordinates are known as piecewise constant
schemes. The Simple Line Interface Calculation (slic) [4] is an early exam-
ple of a piecewise constant scheme. The Hirt-Nichols (h-n) scheme, as used
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in the sola-vof code [3], is a variation of the piecewise constant method.
Under the h-n scheme, free surface interfaces are orientated primarily in di-
rections parallel to grid coordinates, but are allowed the greater freedom of
a stair-shaped profile if the local distribution of the vof function permits.

The alternative to representing free surface interfaces as lines parallel to
one of the grid coordinates is to orientate free surface interfaces in a direction
perpendicular to the locally evaluated gradient of the vof function. vof
advection schemes using this method of free surface reconstruction are known
as piecewise linear schemes, and have been shown to be significantly more
accurate than piecewise constant schemes [7, 6, 1]. The Stream algorithm
detailed in this study is a piecewise linear scheme.

The method of integration used to determine cell boundary fluxes is also
used to classify vof advection techniques. Under operator split schemes,
boundary fluxes are calculated independently in each coordinate direction,
often with some type of limiter employed to reduce possible undershoots or
overshoots occurring in cell averaged values of the vof function. The Youngs
algorithm is an example of an operator split scheme [8].

Multidimensional schemes can be more accurate and efficient in calcu-
lating cell boundary fluxes than operator split schemes [6]. Under a multi-
dimensional scheme, cell boundary fluxes are calculated with a dependence
between fluxes calculated in each of the coordinate directions. The Stream
scheme, as developed in this study, is a fully multidimensional scheme.

In this paper we detail the basic theory behind the Stream algorithm,
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and analyse the performance of the algorithm when simulating a fluid body
deforming in a single vortex. More specific details of the theory and imple-
mentation of the Stream scheme can be found in Harvie and Fletcher [2].

2 The Stream VOF Advection Algorithm

2.1 The Basic Method

The idea behind the Stream algorithm is simple, and can be summarised as
follows:

1. Fluid interfaces are reconstructed in each cell using a piecewise linear
interface method.

2. A semi-continuous velocity field is defined throughout the computa-
tional region, based on the staggered cell boundary velocities.

3. Donating regions for each cell boundary are defined by integrating back
in time for the duration of the computational time step along fluid
streamlines passing through the examined boundary.

4. Boundary fluxes are calculated as the intersection between each donat-
ing region and all fluid locations.
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The primary tasks involved in implementing the Stream algorithm are
defining a suitable velocity field, reconstructing the fluid free surfaces, and
integrating along streamlines to determine fluid volume fluxes occurring over
each boundary. It is these three topics which we now examine.

2.2 Defining the Velocity Field

The velocity at any point in a given cell i, j is defined as

V (x, y) = {χbx + χy} i + {−χby − χx} j, (1)

where

χb =
ui+ 1

2
− ui− 1

2

xi+ 1
2
− xi− 1

2

= −
vj+ 1

2
− vj− 1

2

yj+ 1
2
− yj− 1

2

, (2)

χx = −χbyj− 1
2
− vj− 1

2
and χy = −χbxi− 1

2
+ ui− 1

2
. (3)

Integer subscripts in these equations refer to cell centred quantities, while
integer values plus or minus a half refer to quantities located at cell upper
or lower boundaries, respectively. The velocity in the x coordinate direction
is u, and that in the y direction is v. Note that the equality in equation (2)
follows from the continuity equation applied to the examined cell.

Equation (1) specifies a velocity field which is semi-continuous—the field
is discontinuous at cell vertices, and the tangential component of the velocity
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is discontinuous across cell boundaries. Such discontinuities would be prob-
lematic if we were to integrate along streamlines from cell vertices, but the
integration method we present later avoids this inconvenience. Note that
fluid fluxes over cell boundaries are constant along the length of each bound-
ary. Thus, streamlines intersecting each boundary, which are separated by
equal volume fluxes, are equally spaced.

2.3 Free Surface Interface Reconstruction Using the
Error Minimisation Method

A piecewise linear interface method is used by the Stream scheme for locating
fluid regions. The method involves two steps for each interface reconstruc-
tion; determining the gradient of the interface within each cell, and position-
ing the interface within each cell to equate the calculated cell averaged vof
volume to the volume contained between the free surface and cell boundaries.

The error minimisation gradient calculation method presented here is
based on the concept pioneered by Pilliod [5], however, a significant change
to the scheme has been made. As the name implies, under the error minimi-
sation scheme each interface gradient has associated with it an error function.
When this error function is minimised, we find the optimal free surface gra-
dient within the cell.

The error function is defined as follows.
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1. Given a gradient, the interface is reconstructed such that the volume
of fluid contained between the interface and cell boundaries is equal to
the volume of fluid within the examined cell.

2. The fluid interface is continued beyond the boundaries of the examined
cell, so that it traverses a total of 3 × 3 = 9 cells, with the examined
cell at the centre.

3. Volume of fluid functions, F ∗, are calculated for each of the surrounding
8 cells based on the extended reconstructed interface.

4. Finally, the error associated with the reconstructed interface is calcu-
lated. Under the Pilliod scheme the error function is defined as

EPilliod i,j =
∑

n=i−1,i+1
m=j−1,j+1

(
Fn,m − F ∗

n,m

)2
, (4)

where Fn,m is the actual vof function for cell n, m and F ∗
n,m is the vof

function for cell n, m based on the extended reconstructed interface, as
described above. In this work, the error function is defined as

Ei,j =
Evoid

Evoid,max
+

Efluid

Efluid,max
, (5)

where

Evoid =
∑

n=i−1,i+1
m=j−1,j+1

{
max

(
Fn,m − F ∗

n,m, 0
) × An,m

}3
, (6)
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Evoid,max =
∑

n=i−1,i+1
m=j−1,j+1

{(
1 − F ∗

n,m

) × An,m

}3
, (7)

Efluid =
∑

n=i−1,i+1
m=j−1,j+1

{
max

(
F ∗

n,m − Fn,m, 0
) × An,m

}3
(8)

and

Efluid,max =
∑

n=i−1,i+1
m=j−1,j+1

{
F ∗

n,m × An,m

}3
. (9)

The error function defined here differs from the Pilliod function in two
significant ways. Firstly, the Stream error function comprises two separate
errors, one resulting from the fluid region adjacent to the reconstructed in-
terface and the other from the void region adjacent to the reconstructed
interface. As these errors are normalised separately against the maximum
achievable error for each reconstructed region, the total error function is not
dependent on the relative sizes of the reconstructed void and fluid regions.

Secondly, the Stream error function differs from the Pilliod error function
in the value of the exponent used. While the higher exponent used under
the Stream scheme does give slightly better free surface gradient estimations
than the Pilliod exponent, in practice the difference in performance between
using the two alternative exponents is only slight.
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2.4 The Fluid Boundary Flux Calculation

2.4.1 Approximate Integration Method

Ideally, we would like to integrate equation (1) exactly with respect to time to
determine donating regions associated with each boundary, and then deter-
mine the intersection between these regions and the fluid regions to calculate
fluid boundary fluxes. In practice however, such a procedure would be ex-
tremely complex because fluid passing though an examined cell boundary
during a single time step may have originated from a number of different
cells. Consequently, calculating the geometry of the total boundary donat-
ing region would be computationally impractical. It is for this reason that
an approximate method of integration has been developed to calculate fluid
boundary fluxes.

The theory behind the approximate integration method is simple. Each
boundary flux is split into a discrete number of streamtubes, each ‘tube’
representing an equal flux of total fluid and void volume. Fluid streamlines,
determined using the velocity field defined by equation (1), define the upper
and lower boundaries of each tube. The length of each tube is determined by
the length of the computational time step. The number of tubes that each
boundary is split into, nstream, is determined by the user—the more tubes the
greater the accuracy of integration.

To illustrate this point, Figure 1 shows an example where the velocity at
the right boundary of cell i, j is positive, and fluid is fluxing through this
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boundary flux

boundary flux split into
a discrete number of
`tubes’

upper tube boundary
streamline

lower tube boundary
streamline

cell i,j

L
characteristic tube
channel streamline

streamwise coordinate, l

w

final boundary

Figure 1: An example channel used to calculate the fluid flux over the right
boundary of cell i, j.

boundary from cells i, j and i, j + 1 during the solution time step. The right
boundary of cell i, j is referred to as the ‘final’ boundary, as it is the last
boundary a fluid particle would pass through before entering cell i + 1, j.

The volume of fluid in each tube which is fluxed through a particular final
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boundary during a time step δt, is approximately

Vfluid in tube =

∫ L

0

w (l) f (l) dl, (10)

where a cell of unit depth has been assumed. In equation (10), f (l) is the vof
function evaluated along the central characteristic streamline of the tube, w
is the non-constant width of the tube measured normal to the central tube
streamline, l is a streamwise coordinate along the length of the tube directed
upstream from the final boundary, and L is the streamwise length of the
tube.

To determine the streamwise width of the tube, we note that the total
volume of a small section of the tube, located at l and of length ∆l, is
approximately

∆V = w (l) ∆l. (11)

Also, we note that as no fluid may cross the upper and lower boundaries
of the tube, the volume contained within this small section is equal to the
volume flowrate through the final boundary of the tube multiplied by the
time taken for a fluid particle to pass through the small section of the tube.
Thus,

∆V =
ui,j × δyj

nstream
[t (l) − t (l + ∆l)] , (12)
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where t represents the time taken for a fluid particle to flow from the begin-
ning of the tube to position l. Combining equations (11) and (12), rearrang-
ing, and taking the limit as ∆l → 0 yields,

w(l) = −ui,j × δyj

nstream

lim
∆l→0

1

∆l
[t (l + ∆l) − t (l)] = −ui,j × δyj

nstream

dt

dl
. (13)

Substituting equation (13) into equation (10) gives

Vfluid in tube = −ui,jδyj

nstream

∫ L

0

f (l)
dt

dl
dl =

ui,jδyj

nstream

∫ δt

0

f (t) dt

=
ui,jδyj

nstream
ttotal fluid, (14)

where ttotal fluid is defined as the total time a fluid particle would spend in fluid
regions, when moving for time δt along the central tube streamline towards
the final cell boundary over a stationary fluid geometry. The algorithm used
to calculate ttotal fluid is detailed in Harvie and Fletcher [2]. Once individual
tube fluxes have been determined, cell averaged vof values are incremented
by summing the fluid fluxes occurring over each of the boundaries of each
cell.

2.4.2 Integration Accuracy

An accuracy analysis presented in Harvie and Fletcher [2] shows that the vof
error involved in calculating a fluid flux using the approximate integration
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method over a single boundary can be as high as

Error (F ) = O

(
u

2nstreamδx
δt

)
= O

(
C

2nstream

)
, (15)

where the notation O (z) specifies ‘of the order z’, and C = uδt/δx is the local
Courant number. This boundary flux integration error can lead to errors in
fluid volume conservation, and in the generation of ‘wisps’ of fluid in void
regions, and ‘wisps’ of void in fluid regions.

To prevent such problems, two vof redistribution algorithms are em-
ployed under the Stream scheme:

1. A vof conservation algorithm which corrects F value overshoots and
undershoots using a local redistribution algorithm, after all boundary
fluxes have been incremented.

2. A ‘de-wisping’ algorithm which detects the presence of fluid and void
‘wisps’ after vof advection has occurred, and locally redistributes fluid
to maintain sharp fluid and void interfaces. The vof fraction which
defines both a fluid in void and a void in fluid ‘wisp’ is determined by
the user set variable, Fwisp. A level of this variable which is successful
in removing all ‘wisps’ is given by [2]

Fwisp =
C

nstream

. (16)
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Provided these algorithms are employed, the Stream scheme conserves
fluid volume to the accuracy of the computational floating point arithmetic,
and generates no fluid or void ‘wisps’.

3 Performance of the Stream Scheme

The performance of the Stream scheme is gauged using a time reversed single
vortex advection test, as developed by Rider and Kothe [6]. The velocity
field used during this advection test has non-uniform vorticity. Thus, unlike
in translation or rotation tests, in the vortex test free surface geometries
are sheared and deformed as the fluid moves throughout the computational
domain.

In the time reversed single vortex test a cylinder of fluid, of radius 0.15m
and centred at (0.5,0.75), is deformed over a period of T s in a velocity field
specified by the stream function,

Ψ =
1

π
sin2 (πx) sin2 (πy) cos

(
πt

T

)
. (17)

The direction of the vortex specified by equation (17) reverses over the du-
ration of the test, so that at t = T

2
s, the deformation of the cylinder should

be at a maximum, and at t = T s, the fluid should have returned to form a
cylinder at the initial position. The time reversed vortex test is particularly
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attractive because the accuracy of the advection algorithm can be gauged by
simply comparing the initial and final positions of the fluid cylinder.

Figure 2 shows the single vortex test performed using the h-n [3] and
Stream vof advection algorithms over test durations of T = 0.5 s and T =
2.0 s. As previously discussed, the h-n algorithm is a variation of a piecewise
constant advection scheme. Note that all tests presented in this study were
performed using a Courant-Friedrichs-Lewy (cfl) number of 1 [6], and used
the Stream variables nstream = 100 and Fwisp = 0.01.

Comparing the different results of Figure 2, it is clear that the Stream
scheme performs better than the h-n algorithm in all cases. Also, while not
indicated by the contour plots, the h-n algorithm produced a considerable
amount of fluid ‘wisps’ during the two displayed tests. No fluid or void ‘wisps’
were produced during the Stream algorithm tests.

Figure 3 shows the time reversed single vortex test repeated using the
Stream algorithm, but in these cases the duration of the test was extended
to T = 8.0 s. Cases (A) and (B) show the test performed on a 32×32 mesh,
while Cases (C) and (D) show the test performed using a finer 128×128
mesh. Cases (A) and (C) show the fluid geometry at the maximum fluid
deformation time of t = T

2
, while Cases (B) and (D) show the fluid geometry

at the conclusion of the test.

As shown in Case (B) of Figure 3, the correlation between the initial
and final positions of the cylinder in this long duration test is poor when
the 32×32 mesh is employed. Examining Case (A) of the same figure, it
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Figure 2: Time reversed single vortex advection tests performed using the
h-n and Stream algorithms. All examples are computed on a 32×32 mesh.
The dashed contours indicate the initial position, the solid contours the final
position.
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(C) t=T/2, 1282 mesh
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(D) t=T, 1282 mesh

Figure 3: Time reversed single vortex advection tests performed by the
Stream algorithm over a duration of T = 8.0 s. The dashed contours indicate
the initial position, the solid contours the final position.
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is evident that this poor correlation at later times is due to the breakup of
the spiral during the middle stages of the test. Breakup of the spiral occurs
because the dimensions of the fluid feature become comparable with the
dimensions of the computational cells. Under these circumstances, the free
surface interface reconstruction algorithm acts to ‘glob’ small fluid regions
together, causing a type of numerical surface tension.

Cases (C) and (D) of Figure 3 show that when the grid is refined, the
Stream scheme is able to accurately calculate the long duration vortex test.
Note that the small deformation at the top of the final cylinder, as shown
in Case (D), is caused by the minor breakup of the tail of the spiral at
intermediate times, as shown in Case (C).

Table 1 shows geometrical test errors calculated using the Stream scheme
for a variety of time reversed single vortex tests. The test error is as defined
in Rider and Kothe [6] as,

E =
∑
grid

Vi,j

∣∣F initial
i,j − F final

i,j

∣∣ (18)

where V is the volume of each cell. As shown in the table, advection test
errors tend to decrease when the cell size is reduced, or if the test duration
is reduced. The convergence rate, or spatial order of the scheme, calculated
by comparing the errors generated between the same tests performed on
differently sized meshes, appears to be approximately two.

A comparison of the accuracy of the Stream scheme against a wider va-
riety of vof advection algorithms is given in [2].
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Table 1: Geometrical advection test errors and convergence rates.
Grid Error Order Error Order Error Order

T = 0.5 T = 0.5 T = 2.0 T = 2.0 T = 8.0 T = 8.0
322 5.16 × 10−4 2.34 × 10−3 4.07 × 10−2

2.31 2.05 2.47
642 1.04 × 10−4 5.64 × 10−4 7.37 × 10−3

1.68 2.11 2.40
1282 3.24 × 10−5 1.30 × 10−4 1.39 × 10−3

4 Conclusions

A new vof advection algorithm, termed the Stream scheme, has been pre-
sented. The algorithm uses a linear piecewise free surface reconstruction
method, combined with a unique fully multidimensional boundary flux inte-
gration technique. The performance of the new algorithm has been compared
against the performance of the h-n algorithm, and it has been found that
the Stream scheme is significantly more accurate.

The primary advantages of the Stream scheme over other vof advection
schemes are the accuracy of the advection calculation [2], and the simplic-
ity of the scheme both conceptually, and in application. The simplicity of
the algorithm would arguably make the Stream scheme the easiest of the
currently available multidimensional advection algorithms to apply to other
coordinate systems. An added advantage of the scheme is in the accuracy
control afforded to the user. By varying the number of tubes used to perform
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the boundary flux integrations, the user can choose between an accurate but
computationally expensive simulation, and a less accurate but rapid simula-
tion.
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