Analytic solution of nonlinear batch reaction kinetics equations


  • Sandile Sydney Motsa
  • Stanford Shateyi



batch reactors, kinetics equations, homotopy analysis method, series solution


The classical nonlinear reaction kinetics equations are solved using an analytic technique for solving nonlinear problems known as the homotopy analysis method. An explicit analytic solution for the concentration of reactants and products that is uniformly valid for all times is presented. Numerical simulations based on Runge--Kutta initial value problem solvers verify our analytic solutions with good agreement. References
  • D. W. T. Rippin, Simulation of single andmultiprod uct batch chemical plants for optimal design and operation, Computers and Chemical Engineering, 7, (3), 1983, 137--156. doi:10.1016/0098-1354(83)85016-9
  • M. Friedrich and R. Perne, Design and control of batch reactorsó an industrial viewpoint, Computers and Chemical Engineering, 19s, 1995, S357--S368. doi:10.1016/0098-1354(95)87063-6
  • Y. Kawarasai, T. Kawai, H. Nakano and T. Yamane, A long-lived batch reaction system of a cell-free protein synthesis, Analytical, Biochemistry, 226, 1995, 320--324.
  • M. Fulcher, J. Warzywoda, A. Sacco, Jr., R. W. Thompson, and A. G. Dixon, Gel shrinkage and nutrient addition in unstirred batch zeolite A reaction systems, Microporous Materials, 10, 1997, 199--209. doi:10.1016/S0927-6513(97)00008-4
  • D. Bonvin, Optical operation of batch reactors-personal view, Published by Elsevier Science Ltd, 1998.
  • B. A. A. van Woezik and K. R. Westerterp, Runaway behavior and thermally safe operation of multiple liquid reactions in the semi-batch reactor The nitric acid oxidation of 2-octanol, Chemical Engineering and Processing, 41, 2001, 59--77.
  • K. R. Muske, M. Badlani, P. C. Dell'Orco, J. Brum, Open-loop optimization for batch reaction systems: a case study, Chemical Engineering Science, 59, 2004, 1167--1180. doi:10.1016/j.ces.2003.12.016
  • X. Hua., S. Rohani, and A. Jutan, Cascade closed-loop optimization and control of batch reactors, Chemical Engineering Science, 59, 2004, 5695--5708. doi:10.1016/j.ces.2004.04.002
  • J. Zhang, and R. Smith, Design andoptimisation of batch andsemi-batch reactors, Chemical Engineering Science, 59, 2004, 459--478.
  • L. R. B. Goncalves, R. L. C. Giordano , R. C. Giordano, Mathematical modeling of batch and semibatch reactors for the enzymic synthesis of amoxicillin, Process Biochemistry, 40, 2005, 247--256. doi:10.1016/j.procbio.2003.12.010
  • A. K. Jana., and P. V. R. Adari, Nonlinear state estimation and control of a batch reactive distillation, Chemical Engineering Journal, 150, 2009, 516--526. doi:10.1016/j.cej.2009.03.015
  • S. J. Liao, An explicit, totally analytic approximation of Blasius viscous flow problems, Int. J. Non-Linear Mech, 34, 4, 1999, 759--778.
  • S. J, Liao, On the homotopy analysis method for nonlinear problems, Appl Math Comput, 147, 2004, 499--513. doi:10.1016/S0096-3003(02)00790-7
  • S. J. Liao, Notes on the homotopy analysis method: Some defintions and theorems, Communications in Nonlinear Science and Numerical Simulation, 14, 2009, 983--997. doi:10.1016/j.cnsns.2008.04.013
  • S. J. Liao, Beyond Perturbation: Introduction to Homotopy Analysis Method. Chapman and Hall/CRC Press, 2003.
  • A. Mehmood and A. Ali, Analytic solution of generalized three dimensional flow and heat transfer over a stretching plane wall, International Communications in Heat and Mass Transfer, 33, 2006, 1243--1252. doi:10.1016/j.icheatmasstransfer.2006.08.001
  • A. Ali and A. Mehmood, Homotopy analysis of unsteady boundary layer flow adjacent to permeable stretching surface in a porous medium, Communications in Nonlinear Science and Numerical Simulation, 13, 2008, 340--349. doi:10.1016/j.cnsns.2006.03.008
  • A. Mehmood, A. Ali and T. Shah, Heat transfer analysis of unsteady boundary layer flow by homotopy analysis method, Communications in Nonlinear Science and Numerical Simulation, 13, 2008, 902--912. doi:10.1016/j.cnsns.2006.09.008
  • T. Hayat, M. Sajid and I. Pop, Three-dimensional flow over a stretching surface in a viscoelastic fluid, Nonlinear Analysis: Real World Applications, 9, 2008, 1811--1822. doi:10.1016/j.nonrwa.2007.05.010
  • M. Sajid and T. Hayat, Comparison between HAM and HPM solutions in heat radiation equations, International communications in Heat and Mass Transfer, 36, 2009, 59--62. doi:10.1016/j.icheatmasstransfer.2008.08.010
  • J. Cheng, S. J. Liao, R. N. Mohapatra and K. Vajravelu, Series solutions of nano boundary layer flows by means of the homotopy analysis method, J. Math. Anal. Appl., 343, 2008, 233--245. doi:10.1016/j.jmaa.2008.01.050
  • A. Alizadeh-Pahlavan, and K. Sadeghy, On the use of homotopy analysis method for solving unsteady MHD flow of Maxwelian fluids above impulively stretching sheets, Communications in Nonlinear Science and Numerical Simulation, 14, 2009, 1355--1365.
  • H. Bararnia, A. Ghotbi and G. Domairry, On the analytic solution for MHD natural convection flow and heat generation fluid in porous medium, Communications in Nonlinear Science and Numerical Simulation, 14, 2009, 2689--2701. doi:10.1016/j.cnsns.2008.09.018
  • H. Khan, S. Liao, R. N. Mohapatra and K. Vajravelu, An analytical solution for a nonlinear time-delay model in biolgy, Nonlinear Sci Numer Simul, 14, 2009, 3141--3148. doi:10.1016/j.cnsns.2008.11.003
  • F. M. Allan: Construction of analytic solution to chaotic dynamical systems using Homotopy analysis method, Chaos, Solutions and Fractals, 39, 2009, 1744--1752. doi:10.1016/j.chaos.2007.06.116
  • H. Xu, S. Liao and X. You, Analysis of nonlinear fractional partial differential equations with the homotopy analysis method, Nonlinear Sci Numer Simul, 14, 2009, 1152--1156. doi:10.1016/j.cnsns.2008.04.008





Articles for Electronic Supplement