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Density dependent harvesting of a logistic
population in a slowly varying environment
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Abstract

We apply a multiscale method to construct general analytic ap-
proximations for the solution of a harvested logistic system, where the
system parameters vary slowly in time. Such approximations are a use-
ful alternative to numerical solutions and are applicable to a range of
parameter values. We consider two situations: subcritical harvesting,
where the population survives; and supercritical harvesting, where it is
driven to extinction. These approximations give excellent agreement
with the numerical solutions of test cases.
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1 Introduction

Consider a spatially homogenous single species population that, in isolation,
changes according to a logistic law. When we harvest this at a rate propor-
tional to the population, the rate of change in the population over time

dP(T)

dT
= R(T)P(T)

(
1−

P(T)

K(T)

)
− E(T)P(T), P(T = 0) = P0 . (1)

Here P(T) is the population (or population density) at times T > 0 , P0 is the
initial population, while R(T), K(T) and E(T) are the time-varying growth
rate, carrying capacity and harvesting effort respectively. All of these are
positive quantities, and in the simplest case are constants [8, 2]. The first
term on the right hand side of (1) arises from logistic growth, while the
second, proportional to P(T), arises from harvesting.

In the simple case where R, K and E are positive constants: if E < R ,
the population P(T) tends to K(R − E)/R , a positive value less than K, as
T →∞ ; whereas if E > R , the population tends to zero as T →∞ , that is,
the population is driven to extinction [8, Sec. 1.6]. Thus , E = R is a critical
value, and we term E < R subcritical harvesting, while E > R corresponds to
supercritical harvesting.
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In the real world, R, K and E vary, as in (1) and the question arises as to
the effect of this variation on the evolving population. This matter has been
examined in a number of publications, in various ways. Beddington and
May [1] discuss the effects of random variation of the environment (via R, K
and E) with reference to the constant parameter case. No explicit solutions
for varying parameters are given. Rosenblat [9] considers a periodically vary-
ing environment, and shows that this results in periodic ‘equilibrium’ states,
with the location of the change from subcritical to supercritical harvesting
fluctuating due to this variation. Legovic and Peric [7] use a form of the ex-
act solution of (1) (see (6)) to obtain limiting forms of the population when
K varies periodically, while R and E are kept constant. Cromer [3] allows all
of R, K and E to vary periodically and uses a perturbation method to obtain
a range of results about P(T).

Our approach here is different to those above, although there are aspects in
common. While we do not consider R, K and E to be randomly varying (so
that the problem (1) is deterministic) we do take the view that in realistic
populations, these parameters will show variation on a much longer time
scale to that intrinsic to the population itself. This approach allows us to
recast (1) as a problem involving two time scales and to use a multiscaling
approach to obtain approximate expressions for P(T) for arbitrary slowly
varying R, K and E.

To reformulate (1), we first write it in a dimensionless form. We assume
that R, K and E vary on some intrinsic time scale, T∗; and that they may be
expressed in the form

R(T) = R0r(T/T
∗), K(T) = K0k(T/T

∗), E(T) = E0e(T/T
∗) (2)

respectively, where R0, K0 and E0 are characteristic values of the respective
quantities. Such values might typically be a finite upper bound for the mag-
nitude of the quantity on T > 0 (when such exists); or the value of that
quantity at a specific T value; for example T = 0 . Thus, r, k and e are
dimensionless functions of their dimensionless arguments. Note that R(T)
has the dimension of reciprocal time, so that R−1

0 has dimension of of time,
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and thus is a natural time scale for the variation of the population. Similarly,
K0 has the dimension of population (or population density). This motivates
us to define dimensionless variables

t = R0T , and p = P/K0, (3)

so that the problem (1) converts to the dimensionless form

dp(t, ε)

dt
= r(εt)p(t, ε)

(
1−

p(t, ε)

k(εt)

)
−µe(εt)p(t, ε), p(t = 0) = p0, (4)

where

ε =
R−1
0

T∗
, µ =

E0

R0
and p0 =

P0

K0
(5)

are dimensionless ratios of characteristic values. In particular, ε measures
the ratio of the time scale for population growth to the time scale intrinsic
to R(T), K(T) and E(T). Note that (4) displays p as p(t, ε), showing variation
with respect to t, with ε as a parameter.

In what follows, we regard ε to be small; that is, the time scale for variation
of R, K and E is long relative to R−1

0 , the ‘natural’ time scale for P(T). In
this case, r(εt), k(εt) and e(εt) are slowly varying functions of t.

While the formal solution of (4) is

p(t, ε) =
p0 exp

{∫εt
0
(r(s) − µe(s)) ds

}
p0
∫εt
0

[
r(w)
k(w)

exp
{∫w

0
(r(s) − µe(s)) ds

}]
dw+ 1

, (6)

the integrals in (6) cannot usually be evaluated exactly and we opt for an
approximation to the solution of the problem using a multiscaling approach,
as follows.
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2 The multiscale harvesting equation

Assuming ε to be small, we view the harvesting problem (4) as one involving
two time scales, a ‘slow’ time scale, εt, and a ‘normal’ time scale, t. The
time scale εt is regarded as slow time because it takes an O(ε−1) change in t
to produce an O(1) change in εt.

Based on earlier work on similar problems [6], we introduce the generalised
time scales

t0 =
1

ε
h(t1) and t1 = εt, (7)

where h(t1) is an arbitrary function of t1, to be found. On physical grounds,
we require that h(t1) be positive on t1 > 0 , h ′(t1) > 0 on t1 > 0 , which
ensures the mapping from t1 to t0 is one-one, and h(0) = 0 which makes
t0 = 0 at t1 = t = 0 .

Following the multiscaling procedure, we then view p(t, ε) as a function of
these two time scales. Defining

p(t, ε) ≡ p̃(t0, t1, ε), (8)

and on substituting this into (1), we obtain the multiscaled harvesting equa-
tion which corresponds to the differential equation in (4),

h ′(t1)D0p̃+ εD1p̃ = r(t1)p̃

(
1−

p̃

k(t1)

)
− µe(t1)p̃, (9)

whereD0 andD1 denote partial differential operators taken with respect to t0
and t1 respectively. Note that this process converts an ordinary differential
equation, to a partial one and now (9) displays ε explicitly, rather than
implicitly as in (4), allowing the perturbation approach based on ε → 0 to
be used.
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3 Perturbation analysis

We now express p̃ as a Poincaré expansion in ε:

p̃(t0, t1, ε) = p̃0(t0, t1) + εp̃1(t0, t1) + ε
2p̃2(t0, t1) + · · · . (10)

Substituting the expansion (10) into equation (9) and equating like powers
of ε gives us equations for p̃0 and p̃1:

h ′(t1)D0p̃0 = r(t1)p̃0 −
r(t1)p̃

2
0

k(t1)
− µe(t1)p̃0 (11)

and

h ′(t1)D0p̃1 +D1p̃0 = r(t1)p̃1 −
2r(t1)p̃0p̃1
k(t1)

− µe(t1)p̃1 (12)

respectively.

Solving (11) gives

p̃0 =
k(t1)θ(t1)h

′(t1)

r(t1) +A(t1)k(t1)θ(t1)h ′(t1)e−θ(t1)t0
, (13)

where A(t1) is an arbitrary function of t1 and

θ(t1) =
r(t1) − µe(t1)

h ′(t1)
. (14)

On rearrangement, (12) becomes a linear equation for p̃1 in terms of t0:

D0 p̃1 +
p̃1

h ′(t1)

[
−r(t1) +

2r(t1)p̃0
k(t1)

+ µe(t1)

]
= −

1

h ′(t1)
D1p̃0. (15)

We note that p̃0 contains one arbitrary function of t1, so we only seek a
particular solution of (15) to represent p̃1. Solving (15) gives

p̃1 = ∆

[
−k ′(t1)r(t1) −

k(t1)θ
′(t1)r(t1)

θ(t1)
−
k(t1)h

′′(t1)r(t1)

h ′(t1)
+ k(t1)r

′(t1)
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+

(
A ′(t1)t0 −

1

2
θ ′(t1)A(t1)t

2
0

)
h ′(t1)k(t1)

2θ(t1)
2e−θ(t1)t0

]
,(16)

where ∆ =
[
r(t1) +A(t1)k(t1)θ(t1)h

′(t1)e
−θ(t1)t0

]−1
. If we consider the t0

dependence of p̃0 and p̃1 (so that t1 and hence θ(t1) are fixed), we see that
as t0 → ∞ , their behaviour is governed by the exponential e−θ(t1)t0 . The
exception to this occurs in the t0 e

−θ(t1)t0 and t20 e
−θ(t1)t0 terms in (16). We

eliminate these by choosing A(t1) and θ(t1) to be constants. We now consider
the consequences of these choices.

3.1 Subcritical harvesting

For subcritical harvesting, r(t1)−µe(t1) > 0 , while since h ′(t1) > 0 , θ(t1) is
a positive function, from (14), and a constant, from the arguments above.
We thus choose θ(t1) = 1 , giving

h ′(t1) = r(t1) − µe(t1), h(t1) =

∫ t1
0

(r(s) − µe(s))ds, (17)

and leading to the timescales

t0 =
1

ε

∫ t1
0

(r(s) − µe(s))ds and t1 = εt. (18)

Applying the above choices to (13) and (16) we obtain an explicit form of
the expansion (10),

p̃(t0, t1, ε) =
k(t1)h

′(t1)

r(t1) + ck(t1)h ′(t1)e−t0

− ε
k ′(t1)r(t1)h

′(t1) + k(t1)h
′′(t1)r(t1) − k(t1)r

′(t1)h
′(t1)

h ′(t1) (r(t1) + ck(t1)h ′(t1)e−t0)
2
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+ · · · , (19)

where h ′(t1) is given by (17), t0 is defined by (18) and c is a constant.

Since our expansion consists of both leading order terms and O(ε) terms, we
assume that our constant c = c0 + εc1 + · · · .

On applying the initial condition p̃(0, 0, ε) = p0 to our expansion (19), we
obtain

p0 =
k0h

′
0

r0 + (c0 + εc1 + · · · )k0h ′0

− ε
k ′0r0h

′
0 + k0h

′′
0 r0 − k0r

′
0h
′
0

h ′0 (r0 + (c0 + εc1 + · · · )k0h ′0)
2
+ · · · , (20)

where zero subscripts denote values at t = 0 . By expanding (20) in powers
of ε, then solving for c0 and c1, we find

c0 =
k0h

′
0 − p0r0
p0k0h

′
0

(21)

and c1 =
h ′0k0r

′
0 − k0h

′′
0 r0 − k

′
0r0h

′
0

h ′0
3k20

. (22)

Now our two term expansion for the solution of the non-dimensional harvest-
ing problem becomes

p(t, ε) =
k(εt)h ′(εt)p0k0h

′
0

Ψ

− ε
p20

h ′(εt)h ′0Ψ
2

{
h ′(εt)3k(εt)2Ae−t0 + k20h

′
0
3
B(εt)

}
+ · · ·(23)

where

Ψ = r(εt)p0k0h
′
0 + k(εt)h

′(εt) (k0h
′
0 − r0p0) e

−t0 ,

A = k0r
′
0h
′
0 − k

′
0r0h

′
0 − k0h

′′
0 r0,
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B(εt) = k ′(εt)r(εt)h ′(εt) − k(εt)r ′(εt)h ′(εt) + k(εt)h ′′(εt)r(εt),

while h ′(εt) is given by (17) and t0 is defined by (18). Equation (23) now
provides a two term approximation to the solution of the harvesting model
when the growth rate, carrying capacity and effort vary slowly with time and
the harvesting is subcritical.

From (23) we can see that as time t→∞ (and hence t0 →∞),

p(t, ε) → k(εt)(r(εt) − µe(εt))

r(εt)

− ε

(
k ′(εt)

r(εt)
−
k(εt)r ′(εt)

r(εt)2
+
k(εt)(r ′(εt) − µe ′(εt))

r(εt)(r(εt) − µe(εt))

)
+ · · · . (24)

Hence, over time, the population tends to the limiting value of k(εt)(r(εt)−
µe(εt))/r(εt) minus an O(ε) correction. This gives a two term approxima-
tion to the slowly varying limiting population.

3.2 Supercritical harvesting

Here, r(t1) − µe(t1) < 0, on t1 > 0 , that is the harvesting term exceeds
the critical value r(t) for all time. However, while we still choose A(t1) to
be a constant, c, we now choose θ(t1) = −1 , to preserve the condition that
h ′(t1) > 0 . This then gives

h ′(t1) = µe(t1) − r(t1), h(t1) =

∫ t1
0

(µe(s) − r(s))ds, (25)

so that

t0 = −
1

ε

∫ t1
0

(r(s) − µe(s))ds and t1 = εt. (26)
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Since again, in this case, t0 = 0 at t = 0 , the calculation of the constant c
proceeds as before, with c0 and c1 being given again by (21) and (22). Thus
our expansion for p(t, ε) on t > 0 becomes

p(t, ε) =
k(εt)h ′(εt)p0k0h

′
0

Ψ∗

−ε
p20

h ′(εt)h ′0Ψ
∗2

{
h ′(εt)3k(εt)2Aet0 + k20h

′
0
3
B(εt)

}
+ · · · ,(27)

where
Ψ∗ = r(εt)p0k0h

′
0 + k(εt)h

′(εt) (k0h
′
0 − r0p0) e

t0 ,

and t0 is defined by (26). A and B(εt) are as defined in (23), with h ′(t1) given
by (25). Note that now, p(t, ε) → 0 as t → ∞ ; that is, the population is
driven to extinction, but as expected, this extinction takes infinite time.

4 Comparison with numerical solutions

Here we compare the results (23) and (27) with the corresponding numerical
solutions of (4). We begin by considering the case where both r and k are
constant and only the effort e varies slowly and periodically, that is,

k(εt) ≡ 1, r(εt) ≡ 1, e(εt) = 0.5+ 0.24 cos εt, µ = 0.2 . (28)

Here, r−µe = 0.9− 0.048 cos εt , and the harvesting is subcritical on t > 0 .
Figure 1 compares the result obtained by using the expansion (23) with that
obtained by numerically solving (4), when ε = 0.1 and p0 = 0.1 . The
approximation and numerical results virtually, with both showing a rapid
transition from the starting population to a periodic equilibrium state, given
by (24).
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Figure 1: Population, p, as a function of time, t, for harvesting, where
the multi-scale approximation (23) is shown as (black-dashed)and numerical
solution as (green-solid); for the choice of system equations (28), with p0 =
0.1 and ε = 0.1 . Note that the black dashed curve sits almost exactly on
top of the green continuous curve.



5 Discussion C43

Next we consider slowly varying periodic k and e and a constant r, namely

k(εt) = 0.9+ 0.2 sin εt, r(εt) ≡ 1, e(εt) = 1+ 0.4 sin εt, µ = 0.05 .
(29)

Here, r − µe = 0.95 − 0.02 sin εt , and again, the harvesting is subcritical.
Again, Figure 2 compares the approximation with the results of numerical
calculations; both virtually coincide, while again, a periodic equilibrium state
is reached.

Finally, we consider constants k and r, with e being periodic

k(εt) ≡ 1, r(εt) ≡ 1, e(εt) = 1+ 0.1 sin εt, µ = 2 , (30)

so that r − µe = −1 − 0.2 sin εt , and now, the harvesting is supercritical.
Figure 3 compares the result of using (30) in (27) with numerical solutions
of (4), when ε = 0.1 and p0 = 0.5 . Again, approximation and numerical
results effectively coincide. This time, as expected, the population tends to
zero.

5 Discussion

The two-term expansion (23) and (27) provide explicit, easily evaluated ap-
proximate representations of the population p(t, ε) of (4) in the subcritical
and supercritical harvesting cases, respectively, when ε is small and positive.
They apply to any given set of functions r(εt), k(εt) and e(εt), with the only
proviso being that these be differentiable. Thus there is no particular restric-
tion to periodic functions that exist in other work [7, 3]. When r, k and e
are periodic, the analysis of Section 3.1 shows that the limiting state, (24),
is periodic, as predicted by Rosenblat [9].

Approximations (23) and (27) are formal results only. To validate them as
approximations to the solution of (4) is a calculation well beyond the scope
of this paper, although it has been done elsewhere [4]. Nevertheless, the
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Figure 2: Population, p, as a function of time, t, for harvesting, where
the multi-scale approximation (23) is shown as (black-dashed)and numerical
solution as (green-solid); for the choice of system equations (29), with p0 =
0.1 and ε = 0.1 . Note that the black dashed curve sits almost exactly on
top of the green continuous curve.
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Figure 3: Population, p, as a function of time, t, for harvesting, where
the multi-scale approximation (23) is shown as (black-dashed)and numerical
solution as (green-solid); for the choice of functions (30), with p0 = 0.5 and
ε = 0.1 . Note that the black dashed curve sits almost exactly on top of the
green continuous curve.
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excellent agreement with numerical solutions, as depicted in Figures 1, 2
and 3 is encouraging.

Note that h ′(εt) occurs in the denominator of the second term of each of (23)
and (27). Thus, at points where h ′(εt) = r(εt)−µe(εt) isO(ε), (23) and (27)
experience disordering, and they fail to represent the population p(t, ε). This
problem of disordering was also noted for the Gompertz model [5]. This phe-
nomenon is most important in neighbourhoods of points where h ′(εt) = 0 ,
which are the transition points of (4). This will be discussed in a subsequent
paper, where the present results will construct an approximation to the evolv-
ing population for a transition from a region of subcritical harvesting to one
of supercritical harvesting.
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